随着 5G 和 AIoT 的快速发展,人们对于网络延迟,隐私保护以及用户体验提出了更高的要求。同时,这些需求也不断地推动端侧计算的转变。我们将 AI 应用与端侧计算的结合称为 Endpoint AI。去年,Arm 宣布推出最新 Cortex-M55 处理器和 Ethos-U AI 加速器,为物联网设备在降低能耗的同时显著提升机器学习 ( ML ) 和信号处...
写让你脑洞大开且能看懂的人工智能、流媒体、海外科技
Arm相关的技术博客,提供最新Arm技术干货,欢迎关注
随着边缘计算和深度学习领域的不断发展,越来越多的端侧 AI 设备开始出现在我们的视野中。本次提出的这一方案着眼于边缘计算与深度学习场景,提出了一款应用于无人值守仓储、居民社区或危险禁入区域的智能监控方案,具有成本低、功耗低等优势。此处以人体检测为例,对于长时间徘徊于某区域的行人进行智能识别,并且将异...
谈到高通,大家第一时间就想到他们的手机芯片。诚然,凭借多年在通信技术的积累,高通手机芯片已经成为了全球当之无愧的霸主。据全球知名的市场分析机构IHS Markit公布的数据显示,在2019年Q3季度全球移动处理器市场,高通以31%的市场份额稳居全球第一。
手机拍照的流行,复杂的相机ISP方案的需要更多的努力以提升成像效果。作者在本文中证实:简简单单无需任何关于传感器和光学信息的端到端深度学习模块即可替代大多主流ISP方案。作者提出一种新颖的金字塔CNN架构(PyNet)用于细粒度图像复原,它可以隐含的完成所有ISP过程(比如图像去马赛克、图像去噪、白平衡、颜色与对...
MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。作者:开心的派大星首发:微信公众号:NeuroMem转自:[链接]
火灾初期通常会产生大量烟雾,在很大程度上降低了火焰检测的有效性,通过计算机视觉的方法对烟雾进行监控,可以实现早期火灾预警。计算能力的提高、存储设备的发展,使得传统视觉技术中存在的问题逐渐得到改善或解决,但也迎来了新的挑战。《中国图象图形学报》2019年第10期封面聚焦火情与烟雾检测,关注视频烟雾检测与...
NLP面试宝典:38个最常见NLP问题答案一文get】自然语言处理对社会的影响越来越广泛,但它又是人工智能中最难的子领域之一;因此现在很多公司都在四处寻找大量专业人才!在申请与自然语言处理相关的工作职位时,应聘者往往不清楚面试官可能会问什么样的问题。应聘者除了学习NLP的基础知识外,专门为面试做准备也是很重要...
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
最有深度的半导体新媒体,实讯、专业、原创、深度,50万半导体精英关注。专注观察全球半导体最新资讯、技术前沿、发展趋势。
含极术社区WebinarPPT下载及回放,线下活动技术干货PPT,欢迎关注