CSDN技术社区 · 2022年04月07日

真香!Vision Transformer 快速实现 Mnist 识别

引言

基于深度学习的方法在计算机视觉领域中最典型的应用就是卷积神经网络CNN。CNN中的数据表示方式是分层的,高层特征表示依赖于底层特征,由浅入深抽象地提取高级特征。CNN的核心是卷积核,具有平移不变性和局部敏感性等特点,可以捕捉局部的空间信息。
在过去的10年间,CNN存在很大的优势,在计算机视觉领域被人们寄予厚望,引领了一个时代。但是卷积这种操作缺乏对图像本身的全局理解,无法建模特征之间的依赖关系,从而不能充分地利用上下文信息。此外,卷积的权重是固定的,并不能动态地适应输入的变化。因此,研究人员尝试将自然语言处理领域中的Transformer模型迁移到计算机视觉任务。
Vision Transformer也因此诞生,一种完全基于自注意力机制的图像分类方法。
相比CNN,Transformer的自注意力机制不受局部相互作用的限制,既能挖掘长距离的依赖关系又能并行计算,可以根据不同的任务目标学习最合适的归纳偏置,在诸多视觉任务中取得了良好的效果。
故今天我们将实现Pytorch搭建transformer模型实现Mnist手写字体识别,效果如下:1.png

01 Transformer基本介绍

Transformer在计算机视觉领域能够迅速发展的原因:
(1)学习长距离依赖能力强。CNN是通过不断地堆叠卷积层来实现对图像从局部信息到全局信息的提取,这种计算机制显然会导致模型臃肿,计算量大幅增加,带来梯度消失问题,甚至使整个网络无法训练收敛。而Transformer自带的长依赖特性,利用注意力机制来捕获全局上下文信息,抽取更强有力的特征。
(2)多模态融合能力强。CNN使用卷积核来获取图像信息,但不擅长融合其他模态的信息(如声音、文字、时间等)。而Transformer的输入不需要保持二维图像,通常可以直接对像素进行操作得到初始嵌入向量,其他模态的信息转换为向量即可直接在输入端进行融合。
(3)模型更具可解释性。在Transformer的多头注意力结构中,每个头都应用独立的自注意力机制,这使得模型可以针对不同的任务在不同的表示子空间里学习相关的信息。
1.1 Transformer基本结构
(1)编码器-解码器
Transformer采用编码器-解码器架构,由分别堆叠了6层的编码器和解码器组成,是一种避免循环的模型结构。
编码器每个层结构包含两个子层,多头注意力层和前馈连接层。解码器有三个子层结构,mask多头注意力层,多头注意力层,前馈连接层。每个子层后面都加上残差连接和正则化层,结构如下图:
2.png

02 模型搭建

为了从代码层面理解模型,下面用pytorch简单搭建手写字体识别模型。
这里程序的设计分为以下几个步骤,分别为模块构建、模型搭建以及训练等几个步骤。
2.1 模块构建
这里使用到的模块包括:残差模块,放在每个前馈网络和注意力之后;layernorm归一化,放在多头注意力层和激活函数层,用绝对位置编码的BERT,layernorm用来自身通道归一化;FeedForward放置多头注意力后,因为在于多头注意力使用的矩阵乘法为线性变换,后面跟上由全连接网络构成的FeedForward增加非线性结构;多头注意力层,多个自注意力连起来。使用qkv计算。
代码如下:


#残差模块,放在每个前馈网络和注意力之后
class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) + x
#layernorm归一化,放在多头注意力层和激活函数层。用绝对位置编码的BERT,layernorm用来自身通道归一化
class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)
#放置多头注意力后,因为在于多头注意力使用的矩阵乘法为线性变换,后面跟上由全连接网络构成的FeedForward增加非线性结构
class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, dim)
        )
    def forward(self, x):
        return self.net(x)
#多头注意力层,多个自注意力连起来。使用qkv计算
class Attention(nn.Module):
    def __init__(self, dim, heads=8):
        super().__init__()
        self.heads = heads
        self.scale = dim ** -0.5
        self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
        self.to_out = nn.Linear(dim, dim)
    def forward(self, x, mask = None):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x)
        q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
        dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
        if mask is not None:
            mask = F.pad(mask.flatten(1), (1, 0), value = True)
            assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
            mask = mask[:, None, :] * mask[:, :, None]
            dots.masked_fill_(~mask, float('-inf'))
            del mask
        attn = dots.softmax(dim=-1)
        out = torch.einsum('bhij,bhjd->bhid', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)
        return out

2.2 模型搭建

构建原始Transformer代码,然后构建VIT将图像切割成一个个图像块,组成序列化的数据输入Transformer执行图像分类任务。

代码如下:

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels=3):
        super().__init__()
        assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
        num_patches = (image_size // patch_size) ** 2
        patch_dim = channels * patch_size ** 2
        self.patch_size = patch_size
        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.patch_to_embedding = nn.Linear(patch_dim, dim)
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.transformer = Transformer(dim, depth, heads, mlp_dim)
        self.to_cls_token = nn.Identity()
        self.mlp_head = nn.Sequential(
            nn.Linear(dim, mlp_dim),
            nn.GELU(),
            nn.Linear(mlp_dim, num_classes)
        )
    def forward(self, img, mask=None):
        p = self.patch_size
        x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
        x = self.patch_to_embedding(x)
        cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.pos_embedding
        x = self.transformer(x, mask)
        x = self.to_cls_token(x[:, 0])
        return self.mlp_head(x)

2.3 模型训练
patch大小为 7x7(对于 28x28 图像,这意味着每个图像 4 x 4 = 16 个patch)、10 个可能的目标类别(0 到 9)和 1 个颜色通道(因为图像是灰度)。
在网络参数方面,使用了 64 个单元的维度,6 个 Transformer 块的深度,8 个 Transformer 头,MLP 使用 128 维度。
代码如下:


model = ViT(image_size=28, patch_size=7, num_classes=10, channels=1,
            dim=64, depth=6, heads=8, mlp_dim=128)
optimizer = optim.Adam(model.parameters(), lr=0.003)
train_loss_history, test_loss_history = [], []
for epoch in range(1, N_EPOCHS + 1):
print('Epoch:', epoch)
    train_epoch(model, optimizer, train_loader, train_loss_history)
    evaluate(model, test_loader, test_loss_history)
print('Execution time:', '{:5.2f}'.format(time.time() - start_time), 'seconds')

23.png

完整代码:
链接:
https://pan.baidu.com/s/1myFL...
提取码:sbjm
李秋键,CSDN博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap竞赛获奖等。
推荐阅读
关注数
1851
内容数
103
本栏目由中国开发者社区 CSDN 发起,报道人工智能领域的热点资讯,帮助开发者全方位了解前沿 AI 技术,勾勒 AI 产业全景图。
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息