最近在做几个嵌入式项目,一直使用的是STM32F429作为主控制芯片。从去年开始,ST的芯片全系涨价,价格高到离谱,并且市场上充斥着翻新芯片,有时候有钱都不一定能买到靠谱的原装芯片。考虑到项目最终落地需要考虑到芯片供应问题,所以一直在寻找国产替代。正好看到极术社区的MM32F5270适用活动,初步看芯片性能以及外设接口能满足现在的项目需求,所以申请一个板子来看下从STM32移植到MM32F5270的工作量。
一 项目简介
最近做的项目是一个气体分析仪,基本原理框图如下。
用STM32跑PID算法,控制比例阀开度,将输入气流稳定到设置值,然后由气体检测器进行采样并处理。这个项目目前已经开始小批量出货,这里就不过多说明技术细节。
由于项目客制化需求比较多,要求能够通过键盘选择不同功能,涉及到多级菜单。所以大量的工作都在自定义的菜单设计和实现上,这里就先试试移植OLED驱动代码到MM32F5270看看工作量。
二 环境准备
请参考https://aijishu.com/a/1060000...准备开发环境。记住,一定要下载MDK5.37版本才能使用灵动微电子的MM32 pack包。
因为我习惯用JLINK调试器做开发,所以这里我就直接使用JLINK作为调试工具。JLINK的插头直接插上去就可以,有防呆设计,不用担心会插错,下面是JLINK连接特写。
插上JLINK后,在魔术棒页面DEBUG tab里选择JLINK/J-TRACE Cortex
点击setting,在setting页面选择SW
接下来就可以愉快的使用JLINK进行MM32F5270开发板的调试了。
三 代码移植
初步看了下Mind SDK的文件结构,对所有的外设,都有对应的驱动代码,驱动代码对底层的硬件操作做了很好的封装。看了下对应的driver_example以及demo_apps,提供的都是类似于如下的代码文件组织结构
对于简单的应用来说,这种结构可以满足需求。但是对于一些外设较多的项目,这种组织形式在逻辑上不是很清晰,且代码复用性不高。所以这里按照项目的需求,设计了按hardware和module分类的方法,项目部分文件结构如下:
其中hardware目录是用到的外设driver,module目录里会放跟硬件无关的功能模块,比如流量控制功能,气体采样功能(当然目前为空,但是因为这是硬件无关逻辑,所以基本上可以不做改动直接移到MM32F5270)等。这里以tim_basic例程为基础,来移植OLED驱动。
拆分clock_init.c/clock_init.h文件,这里将所有外设的clokc外设移除,只留下主时钟的初始化。
void BOARD_InitBootClocks(void) { CLOCK_ResetToDefault(); CLOCK_BootToHSE120MHz(); }
将uart拆分到单独文件,以后在不同项目可以进行复用
demo_uart.h#ifndef _UART_H_ #define _UART_H_ #include "clock_init.h" /* DEBUG UART. */ #define BOARD_DEBUG_UART_PORT UART1 #define BOARD_DEBUG_UART_BAUDRATE 9600u #define BOARD_DEBUG_UART_FREQ CLOCK_APB2_FREQ void uart1_init(void); #endif
demo_uart.c
#include "demo_uart.h" #include <stdio.h> #include "hal_common.h" #include "hal_gpio.h" #include "hal_uart.h" #include "hal_rcc.h" static void uart1_gpio_init(void) { /* PB6 - UART1_TX. */ GPIO_Init_Type gpio_init; gpio_init.Pins = GPIO_PIN_6; gpio_init.PinMode = GPIO_PinMode_AF_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &gpio_init); GPIO_PinAFConf(GPIOB, gpio_init.Pins, GPIO_AF_7); /* PB7 - UART1_RX. */ gpio_init.Pins = GPIO_PIN_7; gpio_init.PinMode = GPIO_PinMode_In_Floating; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &gpio_init); GPIO_PinAFConf(GPIOB, gpio_init.Pins, GPIO_AF_7); } static void uart1_port_init(void) { UART_Init_Type uart_init; uart_init.ClockFreqHz = BOARD_DEBUG_UART_FREQ; uart_init.BaudRate = BOARD_DEBUG_UART_BAUDRATE; uart_init.WordLength = UART_WordLength_8b; uart_init.StopBits = UART_StopBits_1; uart_init.Parity = UART_Parity_None; uart_init.XferMode = UART_XferMode_RxTx; uart_init.HwFlowControl = UART_HwFlowControl_None; UART_Init(BOARD_DEBUG_UART_PORT, &uart_init); UART_Enable(BOARD_DEBUG_UART_PORT, true); } void uart1_init(void) { /* UART1. */ RCC_EnableAPB2Periphs(RCC_APB2_PERIPH_UART1, true); RCC_ResetAPB2Periphs(RCC_APB2_PERIPH_UART1); /* GPIOB. */ RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOB, true); RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOB); uart1_gpio_init(); uart1_port_init(); } #if defined(__ARMCC_VERSION) int fputc(int c, FILE *f) { (void)(f); while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(c)); return c; } int fgetc(FILE *f) { (void)(f); while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} return UART_GetData(BOARD_DEBUG_UART_PORT); } #elif defined(__GNUC__) /* * Called by libc stdio fwrite functions */ int _write(int fd, char *ptr, int len) { int i = 0; /* * write "len" of char from "ptr" to file id "fd" * Return number of char written. * * Only work for STDOUT, STDIN, and STDERR */ if (fd > 2) { return -1; } while (*ptr && (i < len)) { while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(*ptr)); i++; ptr++; } return i; } /* * Called by the libc stdio fread fucntions * * Implements a buffered read with line editing. */ int _read(int fd, char *ptr, int len) { int my_len; if (fd > 2) { return -1; } my_len = 0; while (len > 0) { while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} *ptr = UART_GetData(BOARD_DEBUG_UART_PORT); len--; my_len++; if ( (*ptr == '\r') || (*ptr == '\n') || (*ptr == '\0') ) { break; } ptr++; } return my_len; /* return the length we got */ } int putchar(int c) { while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(c)); return c; } int getchar(void) { while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} return UART_GetData(BOARD_DEBUG_UART_PORT); } #elif (defined(__ICCARM__)) /* These function __write and __read is used to support IAR toolchain to printf and scanf. */ int fputc(int ch, FILE *f) { while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(ch)); return ch; } int fgetc(FILE *f) { while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) ) {} return UART_GetData(BOARD_DEBUG_UART_PORT); } #endif
OLED会用到SPI,这里用SPI3作为控制接口
demo_spi.h#ifndef _DEMO_SPI_H_ #define _DEMO_SPI_H_ #include "hal_common.h" #include "clock_init.h" #define BOARD_LOOP_SPI_PORT SPI3 //#define BOARD_LOOP_SPI_BAUDRATE 1000000u /* 400khz. */ #define BOARD_LOOP_SPI_BAUDRATE 400000u /* 400khz. */ #define BOARD_LOOP_SPI_FREQ CLOCK_APB1_FREQ void spi3_init(void); /* SPI tx. */ void spi3_putbyte(uint8_t c); /* SPI rx. */ uint8_t spi3_getbyte(void); #endif
demo_spi.c
#include "demo_spi.h" #include "hal_rcc.h" #include "hal_spi.h" #include "hal_gpio.h" static void spi3_gpio_init(void) { GPIO_Init_Type gpio_init; /* SPI3_NSS - PA15. */ /* gpio_init.Pins = GPIO_PIN_15; gpio_init.PinMode = GPIO_PinMode_AF_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &gpio_init); GPIO_PinAFConf(GPIOA, GPIO_PIN_15, GPIO_AF_6); */ /* SPI3_MOSI - PC12. */ gpio_init.Pins = GPIO_PIN_12; gpio_init.PinMode = GPIO_PinMode_AF_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &gpio_init); GPIO_PinAFConf(GPIOC, GPIO_PIN_12, GPIO_AF_6); /* SPI3_MISO - PC11. */ gpio_init.Pins = GPIO_PIN_11; gpio_init.PinMode = GPIO_PinMode_In_Floating; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &gpio_init); GPIO_PinAFConf(GPIOC, GPIO_PIN_11, GPIO_AF_6); /* SPI3_SCK - PC10. */ gpio_init.Pins = GPIO_PIN_10; gpio_init.PinMode = GPIO_PinMode_AF_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &gpio_init); GPIO_PinAFConf(GPIOC, GPIO_PIN_10, GPIO_AF_6); } static void spi3_port_init(void) { /* Setup SPI module. */ SPI_Master_Init_Type spi_init; spi_init.ClockFreqHz = BOARD_LOOP_SPI_FREQ; spi_init.BaudRate = BOARD_LOOP_SPI_BAUDRATE; spi_init.XferMode = SPI_XferMode_TxRx; spi_init.PolarityPhase = SPI_PolarityPhase_Alt0; spi_init.DataWidth = SPI_DataWidth_8b; spi_init.LSB = false; spi_init.CSMode = SPI_CSMode_NonAuto; SPI_InitMaster(BOARD_LOOP_SPI_PORT, &spi_init); /* Enable SPI. */ SPI_Enable(BOARD_LOOP_SPI_PORT, true); } void spi3_init(void) { /* GPIOA. */ /* RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOA, true); RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOA); */ /* GPIOC. */ RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOC, true); RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOC); /* SPI3. */ RCC_EnableAPB1Periphs(RCC_APB1_PERIPH_SPI3, true); RCC_ResetAPB1Periphs(RCC_APB1_PERIPH_SPI3); spi3_gpio_init(); spi3_port_init(); } /* SPI tx. */ void spi3_putbyte(uint8_t c) { /* Polling for tx empty. */ while ( SPI_STATUS_TX_FULL & SPI_GetStatus(BOARD_LOOP_SPI_PORT) ) {} SPI_PutData(BOARD_LOOP_SPI_PORT, c); } /* SPI rx. */ uint8_t spi3_getbyte(void) { /* Polling for rx done. */ while (0u == (SPI_STATUS_RX_DONE & SPI_GetStatus(BOARD_LOOP_SPI_PORT)) ) {} return SPI_GetData(BOARD_LOOP_SPI_PORT); }
顺便将LED4, LED5的控制单独拉出,可以作为debug的辅助手段
led.h#ifndef _LED_H_ #define _LED_H_ #include "type_def.h" enum LED_NUM { LED4, LED5, }; void led_init(void); void led_on(u8 led); void led_off(u8 led); #endif
led.c
#include "led.h" #include "hal_rcc.h" #include "hal_gpio.h" static void led_gpio_init(void) { GPIO_Init_Type gpio_init; /* LED4. */ gpio_init.Pins = GPIO_PIN_0; gpio_init.PinMode = GPIO_PinMode_Out_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOI, &gpio_init); /* LED5. */ gpio_init.Pins = GPIO_PIN_2; gpio_init.PinMode = GPIO_PinMode_Out_PushPull; gpio_init.Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOD, &gpio_init); } void led_init(void) { /* GPIOD. */ RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOD, true); RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOD); /* GPIOI. */ RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOI, true); RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOI); led_gpio_init(); } void led_on(u8 led) { switch (led) { case LED4: GPIO_WriteBit(GPIOI, GPIO_PIN_0, 0u); break; case LED5: GPIO_WriteBit(GPIOD, GPIO_PIN_2, 0u); break; default: break; } } void led_off(u8 led) { switch (led) { case LED4: GPIO_WriteBit(GPIOI, GPIO_PIN_0, 1u); break; case LED5: GPIO_WriteBit(GPIOD, GPIO_PIN_2, 1u); break; default: break; } }
- 以上完成后,OLED驱动移植的前期准备工作已经完成,现在开始将STM32上的OLED控制代码移到MM32F5270上来。OLED使用的是中景园的3.12寸 256X64 单色OLED屏幕,淘宝连接https://item.taobao.com/item....。
控制引脚如图所示
原始STM32控制代码如下所示:
stm32的oled.h
#ifndef __OLED_H
#define __OLED_H
#include "sys.h"
#define OLED_USE_SOFT_SPI 0
#define OLED_CS_Pin GPIO_PIN_12
#define OLED_CS_GPIO_Port GPIOH
#define OLED_DC_Pin GPIO_PIN_12
#define OLED_DC_GPIO_Port GPIOB
#define OLED_RES_Pin GPIO_PIN_11
#define OLED_RES_GPIO_Port GPIOH
#if OLED_USE_SOFT_SPI
#define SOFT_SPI_MOSI_Pin GPIO_PIN_7
#define SOFT_SPI_MOSI_GPIO_Port GPIOF
#define SOFT_SPI_MISO_Pin GPIO_PIN_8
#define SOFT_SPI_MISO_GPIO_Port GPIOF
#define SOFT_SPI_SCK_Pin GPIO_PIN_9
#define SOFT_SPI_SCK_GPIO_Port GPIOF
#endif
#define USE_HORIZONTAL 1 //设置显示方向 0:正向显示;1:旋转180度显示
#ifndef PIN_RESET
#define PIN_RESET 0
#define PIN_SET 1
#endif
void OLED_WR_REG(u8 reg);
void OLED_WR_Byte(u8 dat);
void Column_Address(u8 a,u8 b);
void Row_Address(u8 a,u8 b);
void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color);
void OLED_ShowChinese(u8 x,u8 y,u8 *s,u8 sizey,u8 mode);
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode);
void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode);
u32 oled_pow(u8 m,u8 n);
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode);
void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);
void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);
void OLED_Init(void);
void OLED_GPIO_Init(void);
#endif
stm32的oled.c
#include "oledfont.h"
#include "delay.h"
#include "oled.h"
#include "osal.h"
#include "spi.h"
#if OLED_USE_SOFT_SPI
static void OLED_SCL_Clr()
{
HAL_GPIO_WritePin(SOFT_SPI_SCK_GPIO_Port, SOFT_SPI_SCK_Pin, GPIO_PIN_RESET); //SCL
}
static void OLED_SCL_Set()
{
HAL_GPIO_WritePin(SOFT_SPI_SCK_GPIO_Port, SOFT_SPI_SCK_Pin, GPIO_PIN_SET);
}
static void OLED_SDA_Clr()
{
HAL_GPIO_WritePin(SOFT_SPI_MOSI_GPIO_Port, SOFT_SPI_MOSI_Pin, GPIO_PIN_RESET); //SDA
}
static void OLED_SDA_Set()
{
HAL_GPIO_WritePin(SOFT_SPI_MOSI_GPIO_Port, SOFT_SPI_MOSI_Pin, GPIO_PIN_SET);
}
#endif
static void OLED_RES_Clr()
{
HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_RESET); //RES
}
static void OLED_RES_Set()
{
HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_SET);
}
static void OLED_DC_Clr()
{
HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_RESET); //DC
}
static void OLED_DC_Set()
{
HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_SET);
}
static void OLED_CS_Clr()
{
HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET); //CS
}
static void OLED_CS_Set()
{
HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_SET);
}
static void OLED_Write_Byte(u8 dat)
{
#if OLED_USE_SOFT_SPI
u8 i;
for(i=0;i<8;i++)
{
OLED_SCL_Clr();
//delay_us(200);
if(dat&0x80)
{
OLED_SDA_Set();
}
else
{
OLED_SDA_Clr();
}
//delay_us(20);
OLED_SCL_Set();
//delay_us(200);
dat<<=1;
}
#else
SPI_Write_Byte(2, dat);
#endif
}
void OLED_WR_Bus(u8 dat)
{
OLED_CS_Clr();
OLED_Write_Byte(dat);
OLED_CS_Set();
}
void OLED_WR_REG(u8 reg)
{
OLED_DC_Clr();
OLED_WR_Bus(reg);
OLED_DC_Set();
}
void OLED_WR_Byte(u8 dat)
{
OLED_WR_Bus(dat);
}
void Column_Address(u8 a,u8 b)
{
OLED_WR_REG(0x15); // Set Column Address
OLED_WR_Byte(0x1c+a);
OLED_WR_Byte(0x1c+b);
}
void Row_Address(u8 a,u8 b)
{
OLED_WR_REG(0x75); // Row Column Address
OLED_WR_Byte(a);
OLED_WR_Byte(b);
OLED_WR_REG(0x5C); //写RAM命令
}
void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color)
{
u8 x,y;
xstr/=4;
xend/=4;
Column_Address(xstr,xend-1);
Row_Address(ystr,yend-1);
for(x=xstr;x<xend;x++)
{
for(y=ystr;y<yend;y++)
{
OLED_WR_Byte(color);
OLED_WR_Byte(color);
}
}
}
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode)
{
u8 c,i,k,m,t=4,size2,data1,DATA=0;
size2=(sizey/16+((sizey%16)?1:0))*sizey;
c=chr-' ';
Column_Address(x/4,x/4+sizey/8-1);
Row_Address(y,y+sizey-1);
for(i=0;i<size2;i++)
{
if(sizey==16)
{
data1=ascii_1608[c][i];//8x16 ASCII码
}
else if(sizey==24)
{
data1=ascii_2412[c][i];//12x24 ASCII码
}
else if(sizey==32)
{
data1=ascii_3216[c][i];//16x32 ASCII码
}
if(sizey%16)
{
m=sizey/16+1;
if(i%m) t=2;
else t=4;
}
for(k=0;k<t;k++)
{
if(data1&(0x01<<(k*2+0)))
{
DATA=0xf0;
}
if(data1&(0x01<<(k*2+1)))
{
DATA|=0x0f;
}
if(mode)
{
OLED_WR_Byte(~DATA);
}else
{
OLED_WR_Byte(DATA);
}
DATA=0;
}
}
}
void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode)
{
while(*dp!='\0')
{
OLED_ShowChar(x,y,*dp,sizey,mode);
dp++;
x+=sizey/2;
}
}
u32 oled_pow(u8 m,u8 n)
{
u32 result=1;
while(n--)result*=m;
return result;
}
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode)
{
u8 t,temp;
u8 enshow=0;
for(t=0;t<len;t++)
{
temp=(num/oled_pow(10,len-t-1))%10;
if(enshow==0&&t<(len-1))
{
if(temp==0)
{
OLED_ShowChar(x+(sizey/2)*t,y,' ',sizey,mode);
continue;
}else enshow=1;
}
OLED_ShowChar(x+(sizey/2)*t,y,temp+'0',sizey,mode);
}
}
void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode)
{
u16 i,num;
length=(length/4+((length%4)?1:0))*4;
num=length/2*width;
x/=4;
length/=4;
Column_Address(x,x+length-1);
Row_Address(y,y+width-1);
for(i=0;i<num;i++)
{
if(mode)
{
OLED_WR_Byte(~BMP[i]);
}else
{
OLED_WR_Byte(BMP[i]);
}
}
}
void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode)
{
u8 k,DATA=0;
u16 i,num;
length=(length/8+((length%8)?1:0))*8;
num=length*width/8;
x/=4;
length/=4;
Column_Address(x,x+length-1);
Row_Address(y,y+width-1);
for(i=0;i<num;i++)
{
for(k=0;k<4;k++)
{
if(BMP[i]&(0x01<<(k*2+0)))
{
DATA=0xf0;
}
if(BMP[i]&(0x01<<(k*2+1)))
{
DATA|=0x0f;
}
if(mode)
{
OLED_WR_Byte(~DATA);
}else
{
OLED_WR_Byte(DATA);
}
DATA=0;
}
}
}
void OLED_Init(void)
{
OLED_RES_Clr();
delay_ms(10);
OLED_RES_Set();
OLED_WR_REG(0xfd); /*Command Lock*/
OLED_WR_Byte(0x12);
OLED_WR_REG(0xae); //Sleep In
OLED_WR_REG(0xb3); //Set Display Clock Divide Ratio/Oscillator Frequency
OLED_WR_Byte(0x91);
OLED_WR_REG(0xca); //Set Multiplex Ratio
OLED_WR_Byte(0x3f);
OLED_WR_REG(0xa2); //Set Display Offset
OLED_WR_Byte(0x00); //
OLED_WR_REG(0xa1); //Set Display Start Line
OLED_WR_Byte(0x00); //
OLED_WR_REG(0xa0); //Set Re-Map $ Dual COM Line Mode
if(USE_HORIZONTAL)
{
OLED_WR_Byte(0x14);
}
else
{
OLED_WR_Byte(0x06);
}
OLED_WR_REG(0xB5); //Set GPIO
OLED_WR_Byte(0x00);
OLED_WR_REG(0xab); //Function Selection
OLED_WR_Byte(0x01); //
OLED_WR_REG(0xb4); //Enable External VSL
OLED_WR_Byte(0xa0); //
OLED_WR_Byte(0xfd); //
OLED_WR_REG(0xc1); //Set Contrast Current
OLED_WR_Byte(0xff);
OLED_WR_REG(0xc7); //Master Contrast Current Control
OLED_WR_Byte(0x0f); //
OLED_WR_REG(0xb9); //Select Default Linear Gray Scale Table
OLED_WR_REG(0xb1); //Set Phase Length
OLED_WR_Byte(0xe2);
OLED_WR_REG(0xd1); //Enhance Driving Scheme Capability
OLED_WR_Byte(0x82);
OLED_WR_Byte(0x20);
OLED_WR_REG(0xbb); //Set Pre-Charge Voltage
OLED_WR_Byte(0x1f);
OLED_WR_REG(0xb6); //Set Second Pre-Charge Period
OLED_WR_Byte(0x08);
OLED_WR_REG(0xbe); //Set VCOMH Deselect Level
OLED_WR_Byte(0x07);
OLED_WR_REG(0xa6); //Set Display Mode
OLED_Fill(0,0,256,64,0x00); //Clear Screen
OLED_WR_REG(0xaf); //Sleep Out
LOG_INFO("oled init done");
}
void OLED_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
#if OLED_USE_SOFT_SPI
HAL_GPIO_WritePin(GPIOF, SOFT_SPI_MOSI_Pin|SOFT_SPI_SCK_Pin, GPIO_PIN_RESET);
#endif
/*Configure GPIO pins : OLED_CS_Pin OLED_DC_Pin OLED_RES_Pin */
GPIO_InitStruct.Pin = OLED_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_CS_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = OLED_DC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_DC_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = OLED_RES_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RES_GPIO_Port, &GPIO_InitStruct);
#if OLED_USE_SOFT_SPI
/*Configure GPIO pins : OLED_CS_Pin OLED_DC_Pin OLED_RES_Pin */
GPIO_InitStruct.Pin = SOFT_SPI_MOSI_Pin | SOFT_SPI_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SOFT_SPI_MISO_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
#endif
}
分析OLED的LOG,发现只需要更改RES, DC, CS的GPIO控制即可。将OLED的GPIO控制由STM32 HAL库控制更改为MM32F5270 HAL控制,修改代码如下:
MM32F5270的oled.h
#ifndef __OLED_H
#define __OLED_H
#include "type_def.h"
#define USE_HORIZONTAL 1 //设置显示方向 0:正向显示;1:旋转180度显示
#define OLED_USE_SOFT_SPI 0
void OLED_control_gpio_init(void);
void OLED_WR_REG(u8 reg);
void OLED_WR_Byte(u8 dat);
void Column_Address(u8 a,u8 b);
void Row_Address(u8 a,u8 b);
void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color);
void OLED_ShowChinese(u8 x,u8 y,u8 *s,u8 sizey,u8 mode);
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode);
void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode);
u32 oled_pow(u8 m,u8 n);
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode);
void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);
void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);
void OLED_Init(void);
#endif
MM32F5270的oled.c
#include "oledfont.h"
#include "delay.h"
#include "oled.h"
#include "demo_spi.h"
#include "hal_rcc.h"
#include "hal_gpio.h"
#include "stdio.h"
~~*void OLEDcontrolgpioinit(void)
{
//GPIOA
RCCEnableAHB1Periphs(RCCAHB1PERIPHGPIOA, true);
RCCResetAHB1Periphs(RCCAHB1PERIPHGPIOA);
#if OLEDUSESOFTSPI
RCCEnableAHB1Periphs(RCCAHB1PERIPHGPIOC, true);
RCCResetAHB1Periphs(RCCAHB1PERIPHGPIOC);
#endif
GPIOInitType gpioinit;
//RES PA10
gpioinit.Pins = GPIOPIN10;
gpioinit.PinMode = GPIOPinModeOutPushPull;
gpioinit.Speed = GPIOSpeed50MHz;
GPIOInit(GPIOA, &gpioinit);
//DC PA12
gpioinit.Pins = GPIOPIN12;
gpioinit.PinMode = GPIOPinModeOutPushPull;
gpioinit.Speed = GPIOSpeed50MHz;
GPIOInit(GPIOA, &gpioinit);
//CS PA15
gpioinit.Pins = GPIOPIN15;
gpioinit.PinMode = GPIOPinModeOutPushPull;
gpioinit.Speed = GPIOSpeed50MHz;
GPIOInit(GPIOA, &gpioinit);
#if OLEDUSESOFTSPI
//soft SCL PC10
gpioinit.Pins = GPIOPIN10;
gpioinit.PinMode = GPIOPinModeOutPushPull;
gpioinit.Speed = GPIOSpeed50MHz;
GPIOInit(GPIOC, &gpioinit);
//soft MOSI PC12
gpioinit.Pins = GPIOPIN12;
gpioinit.PinMode = GPIOPinModeOutPushPull;
gpioinit.Speed = GPIOSpeed50MHz;
GPIOInit(GPIOC, &gpioinit);
#endif
}
#if OLEDUSESOFTSPI
static void OLEDSOFTSPISCKClr()
{
GPIOWriteBit(GPIOC, GPIOPIN10, 0u); //RES
}
static void OLEDSOFTSPISCKSet()
{
GPIOWriteBit(GPIOC, GPIOPIN10, 1u); //RES
}
static void OLEDSOFTSPISDAClr()
{
GPIOWriteBit(GPIOC, GPIOPIN12, 0u); //RES
}
static void OLEDSOFTSPISDASet()
{
GPIOWriteBit(GPIOC, GPIOPIN12, 1u); //RES
}
#endif
static void OLEDRESClr()
{
GPIOWriteBit(GPIOA, GPIOPIN10, 0u); //RES
}
static void OLEDRESSet()
{
GPIOWriteBit(GPIOA, GPIOPIN10, 1u); //RES
}
static void OLEDDCClr()
{
GPIOWriteBit(GPIOA, GPIOPIN12, 0u); //RES
}
static void OLEDDCSet()
{
GPIOWriteBit(GPIOA, GPIOPIN12, 1u); //RES
}
static void OLEDCSClr()
{
GPIOWriteBit(GPIOA, GPIOPIN15, 0u); //RES
}*~~
static void OLED_CS_Set()
{
GPIO_WriteBit(GPIOA, GPIO_PIN_15, 1u); //RES
}
static void OLED_Write_Byte(u8 dat)
{
#if OLED_USE_SOFT_SPI
u8 i;
for(i=0;i<8;i++)
{
OLED_SOFT_SPI_SCK_Clr();
//delay_us(20);
if(dat&0x80)
{
OLED_SOFT_SPI_SDA_Set();
}
else
{
OLED_SOFT_SPI_SDA_Clr();
}
//delay_us(20);
OLED_SOFT_SPI_SCK_Set();
//delay_us(200);
dat<<=1;
}
#else
spi3_putbyte(dat);
#endif
}
void OLED_WR_Bus(u8 dat)
{
OLED_CS_Clr();
OLED_Write_Byte(dat);
OLED_CS_Set();
}
void OLED_WR_REG(u8 reg)
{
OLED_DC_Clr();
OLED_WR_Bus(reg);
OLED_DC_Set();
}
void OLED_WR_Byte(u8 dat)
{
OLED_WR_Bus(dat);
}
void Column_Address(u8 a,u8 b)
{
OLED_WR_REG(0x15); // Set Column Address
OLED_WR_Byte(0x1c+a);
OLED_WR_Byte(0x1c+b);
}
void Row_Address(u8 a,u8 b)
{
OLED_WR_REG(0x75); // Row Column Address
OLED_WR_Byte(a);
OLED_WR_Byte(b);
OLED_WR_REG(0x5C); //写RAM命令
}
void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color)
{
u8 x,y;
xstr/=4;
xend/=4;
Column_Address(xstr,xend-1);
Row_Address(ystr,yend-1);
for(x=xstr;x<xend;x++)
{
for(y=ystr;y<yend;y++)
{
OLED_WR_Byte(color);
OLED_WR_Byte(color);
}
}
}
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode)
{
u8 c,i,k,m,t=4,size2,data1,DATA=0;
size2=(sizey/16+((sizey%16)?1:0))*sizey;
c=chr-' ';
Column_Address(x/4,x/4+sizey/8-1);
Row_Address(y,y+sizey-1);
for(i=0;i<size2;i++)
{
if(sizey==16)
{
data1=ascii_1608[c][i];//8x16 ASCII码
}
else if(sizey==24)
{
data1=ascii_2412[c][i];//12x24 ASCII码
}
else if(sizey==32)
{
data1=ascii_3216[c][i];//16x32 ASCII码
}
if(sizey%16)
{
m=sizey/16+1;
if(i%m) t=2;
else t=4;
}
for(k=0;k<t;k++)
{
if(data1&(0x01<<(k*2+0)))
{
DATA=0xf0;
}
if(data1&(0x01<<(k*2+1)))
{
DATA|=0x0f;
}
if(mode)
{
OLED_WR_Byte(~DATA);
}else
{
OLED_WR_Byte(DATA);
}
DATA=0;
}
}
}
void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode)
{
while(*dp!='\0')
{
OLED_ShowChar(x,y,*dp,sizey,mode);
dp++;
x+=sizey/2;
}
}
u32 oled_pow(u8 m,u8 n)
{
u32 result=1;
while(n--)result*=m;
return result;
}
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode)
{
u8 t,temp;
u8 enshow=0;
for(t=0;t<len;t++)
{
temp=(num/oled_pow(10,len-t-1))%10;
if(enshow==0&&t<(len-1))
{
if(temp==0)
{
OLED_ShowChar(x+(sizey/2)*t,y,' ',sizey,mode);
continue;
}else enshow=1;
}
OLED_ShowChar(x+(sizey/2)*t,y,temp+'0',sizey,mode);
}
}
void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode)
{
u16 i,num;
length=(length/4+((length%4)?1:0))*4;
num=length/2*width;
x/=4;
length/=4;
Column_Address(x,x+length-1);
Row_Address(y,y+width-1);
for(i=0;i<num;i++)
{
if(mode)
{
OLED_WR_Byte(~BMP[i]);
}else
{
OLED_WR_Byte(BMP[i]);
}
}
}
void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode)
{
u8 k,DATA=0;
u16 i,num;
length=(length/8+((length%8)?1:0))*8;
num=length*width/8;
x/=4;
length/=4;
Column_Address(x,x+length-1);
Row_Address(y,y+width-1);
for(i=0;i<num;i++)
{
for(k=0;k<4;k++)
{
if(BMP[i]&(0x01<<(k*2+0)))
{
DATA=0xf0;
}
if(BMP[i]&(0x01<<(k*2+1)))
{
DATA|=0x0f;
}
if(mode)
{
OLED_WR_Byte(~DATA);
}else
{
OLED_WR_Byte(DATA);
}
DATA=0;
}
}
}
void OLED_Init(void)
{
OLED_RES_Clr();
delay_ms(10);
OLED_RES_Set();
OLED_WR_REG(0xfd); /*Command Lock*/
OLED_WR_Byte(0x12);
OLED_WR_REG(0xae); //Sleep In
OLED_WR_REG(0xb3); //Set Display Clock Divide Ratio/Oscillator Frequency
OLED_WR_Byte(0x91);
OLED_WR_REG(0xca); //Set Multiplex Ratio
OLED_WR_Byte(0x3f);
OLED_WR_REG(0xa2); //Set Display Offset
OLED_WR_Byte(0x00); //
OLED_WR_REG(0xa1); //Set Display Start Line
OLED_WR_Byte(0x00); //
OLED_WR_REG(0xa0); //Set Re-Map $ Dual COM Line Mode
if(USE_HORIZONTAL)
{
OLED_WR_Byte(0x14);
}
else
{
OLED_WR_Byte(0x06);
}
OLED_WR_REG(0xB5); //Set GPIO
OLED_WR_Byte(0x00);
OLED_WR_REG(0xab); //Function Selection
OLED_WR_Byte(0x01); //
OLED_WR_REG(0xb4); //Enable External VSL
OLED_WR_Byte(0xa0); //
OLED_WR_Byte(0xfd); //
OLED_WR_REG(0xc1); //Set Contrast Current
OLED_WR_Byte(0xff);
OLED_WR_REG(0xc7); //Master Contrast Current Control
OLED_WR_Byte(0x0f); //
OLED_WR_REG(0xb9); //Select Default Linear Gray Scale Table
OLED_WR_REG(0xb1); //Set Phase Length
OLED_WR_Byte(0xe2);
OLED_WR_REG(0xd1); //Enhance Driving Scheme Capability
OLED_WR_Byte(0x82);
OLED_WR_Byte(0x20);
OLED_WR_REG(0xbb); //Set Pre-Charge Voltage
OLED_WR_Byte(0x1f);
OLED_WR_REG(0xb6); //Set Second Pre-Charge Period
OLED_WR_Byte(0x08);
OLED_WR_REG(0xbe); //Set VCOMH Deselect Level
OLED_WR_Byte(0x07);
OLED_WR_REG(0xa6); //Set Display Mode
OLED_Fill(0,0,256,64,0x00); //Clear Screen
OLED_WR_REG(0xaf); //Sleep Out
printf("oled init done\n");
}
对应只需要改动几个控制GPIO的具体实现,可以非常快速的进行移植
最后放上main函数,在main函数里要对用到的各个硬件做初始化,代码如下:
/* * Copyright 2021 MindMotion Microelectronics Co., Ltd. * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include <stdint.h> #include <stdio.h> #include "clock_init.h" #include "demo_uart.h" #include "conv_timer.h" #include "demo_spi.h" #include "led.h" #include "delay.h" #include "oled.h" /* * Functions. */ int main(void) { BOARD_InitBootClocks(); timer1_init(); uart1_init(); #if !OLED_USE_SOFT_SPI spi3_init(); #endif led_init(); OLED_control_gpio_init(); OLED_Init(); //OLED_ShowString(0, 0, "hello world", 16, 0); printf("\r\ntim_basic example.\r\n"); timer1_start(); led_off(LED4); led_off(LED5); while (1) { //spi3_putbyte(0xaa); led_on(LED4); delay_1ms(); led_off(LED4); delay_1ms(); OLED_ShowString(0, 0, " ARM STAR-MC1 MM32F5270", 16, 0); OLED_ShowString(0, 16, " aijishu", 16, 0); OLED_ShowString(0, 32, " https://aijishu.com", 16, 0); } } /* EOF. */
显示效果如图所示:
四 总结
MindSDK已经提供了封装良好的驱动代码,能够非常方便的做开发,对于STM32平台的应用,能够非常快速的进行移植,所需要的工作量非常小。
STM32CubeMX只是提供了一个可视化的配置界面,但是其生成的代码对于一些比较大型的项目来说,其组织形式和代码复用性相比MindSDK并不会有优势。
MindSDK目前提供的轮子,已经能够应付一些基本需求。但是目前,MindSDK缺乏对FreeRTOS,RTThread等RTOS的支持。如果官方能够解决RTOS的问题,相信我们能够基于MindSDK用MM32F5230作出更多有趣的应用。
五 参考链接
【灵动官网】PLUS-F5270开发板介绍(含资料链接): https://www.mindmotion.com.cn...
【灵动官网】MM32F5270芯片介绍(含资料链接): https://www.mindmotion.com.cn...
【极术社区】基于灵动MM32F5系列芯片的PLUS-F5270开发板资料(包含逐飞科技网盘链接): https://aijishu.com/a/1060000...
【极术社区】[MM32F5270开发板试用] 基本开发环境搭建篇: https://aijishu.com/a/1060000...
【极术社区】带灵动微MM32F5的Plus-F5270开发板怎么玩? https://aijishu.com/a/1060000...