Jack-Cui · 2020年12月10日

心中无码便是高清,马赛克“脑补”算法 PULSE

image.png

点赞再看,养成习惯,微信公众号搜索【JackCui-AI】关注这个爱发技术干货的程序员。本文 GitHub https://github.com/Jack-Cherish/PythonPark 已收录,有一线大厂面试完整考点、资料以及我的系列文章。

1 万恶马赛克

万恶的马赛克,是阻碍人类进步的绊脚石。
马赛克“脑补”算法 PULSE,助你图片模糊高清

image.png

这是杜克大学近期的一项研究,将模糊人脸秒变高清。

640 (3).gif

PULSE 算法目前只支持人脸的马赛克“去除”,因为训练数据都是人脸。
也就是说,“脑补”其它物体马赛克下的内容也是可以的,只要你有数据!
我知道,你一定又有了一些大胆的想法

「 Just do it 」 !image.png

今天,继续手把手教学
算法原理、环境搭建、效果测试,一条龙服务,尽在下文!

2 算法原理

PULSE 算法可以在几秒内,将 16x16 像素的低分辨率(Low Resolution,以下简称 LR)小图,放大 64 倍,变成 1024 x 1024 像素的高分辨率(High Resolution,以下简称 HR)图像。
PULSE 算法会「脑补」出 LR 图像一些不存在的特征,补充细节,例如纹理、毛孔、毛发等:

image.png

左图为原始 LR 图片,右图为 PULSE 算法生成的 HR 图片。
PULSE 算法的思路是,拿到一张 LR 图片,使用 stylegan 生成 HR 图片,再将 HR 图片 downscale 得到的 LR 图片与原始 LR 图片对比,一直迭代收敛,找到最接近的那张。如下图所示:

image.png

原始 LR 图片和 PULSE 修复后再 donwscale 的 LR 图片对,使两者最接近的 HR 图片,就是修复得到的 HR 图片。
该算法在著名的高分辨率人脸数据集 CelebA HQ 上进行了效果评估,用 64×,32× 和 8× 的比例因子,采用不同的算法,进行了对比实验。
实验表明,PULSE 算法的效果最佳,得分几乎与真实的高质量照片一样高

image.png

通过上图,可以清晰地看到,PULSE 算法在人脸不同位置的纹理细节。
不过 PULSE 算法也有一定的局限性,它无法将失焦、不能识别的人脸照片,变成照片真人的清晰图像,它仅会生成不存在但看上去很真实的新面孔
说白了,PULSE 生成的高清图片,是「脑补」出来的,与真实的人脸照片可能存在差别。

3 环境搭建

PULSE 算法采用 Pytorch 实现,使用了 dlib 人脸库的一些 API。
项目地址:
https://github.com/adamian98/...
环境搭建不复杂,工程里的 pulse.yml 文件,已经写明了依赖环境。

name: pulse

直接使用 pulse.yml 文件,用 Anaconda 进行环境配置。
修改 pulse.yml 文件中 prefix 的路径为你的 Anaconda 路径,然后使用指令创建环境:

conda create -f pulse.yml

这是官方推荐的方法。亲测,依然遇到了一些依赖问题。
最后一个一个依赖包安装才解决,所以我建议是使用 Anaconda 通过第三方库的包名安装,不用管版本啥的,例如:

conda install ca-certificates requests

libcxx、libedit 等这类的 lib 库不用安装,Anaconda 在创建 Python 环境的时候已经安装好了。
这里面稍微难安装的就是 dlib,dlib 需要使用 cmake 进行编译,所以需要先安装好 cmake,这里使用 pip 安装即可:

python -m pip install cmake dlib

都搞定了,环境就算搭建完成了。

4 效果测试

PULSE 项目地址:
https://github.com/adamian98/...
下载项目到本地:

git clone https://github.com/adamian98/pulse

项目提供了 pretrained model ,模型放在了 Google Drive ,不能翻墙的无法下载。
所以我将模型下载好,上传到了我的百度网盘。
下载地址(提取码:3gpq):
https://pan.baidu.com/s/13NZ8...
在工程目录,创建 cache、realpics 两个文件夹,将下载好的三个文件放到 cache 文件夹内。
然后将下图放到 realpics 文件夹内,我们以此图为例,进行测试。

image.png

图片下载地址:
https://cuijiahua.com/wp-cont...
首先,我们使用 align\_face.py 对图片 downscale。

python align_face.py

程序使用 dlib 检测人脸框,并对检测到的人脸进行降低分辨率处理,默认降低为 32x32 分辨率的图片。
生成的图片会放到 input 文件夹内,如果将图片放大到 1024x1024,就是相当于一张布满马赛克的图片。

image.png

有了这张 LR 图片,也就是低分辨率图片,使用 PULSE 算法,看下「脑补」效果吧!

python run.py -steps=2000

运行 run.py ,迭代 2000 steps,在 runs 文件夹下就会生成“去除”马赛克后的「脑补」图。

image.png

「脑补」图跟原图还是有些神似的!

5 争议

我们都知道,今年 5 月 25 日美国的「跪杀黑人」事件。

image.png

由此引发了美国有史以来,最大规模的游行抗议。

image.png

6 月份,吃“美国瓜”的人应该不在少数,比如我就在 YouTube 上吃了一个月的瓜。
每个国家都有自己的敏感话题
而美国,现在的敏感话题就是「种族歧视」。
PULSE 算法惹了大麻烦。
PULSE 采用 CelebA-HQ 训练的模型,数据集都是白人,因此算法「脑补」出的也都是白人脸
这在如今高喊「黑命贵」的美国,无疑是一股扎眼的“逆流”。
有网友就拿奥巴马的低分辨率照片进行测试,结果生成的都是白人男性,更加坐实了 PULSE 算法的「种族歧视」罪名。

image.png

PULSE 算法,以及相关的研究人员,因此被打上了「种族偏见」的标签。
甚至深度学习领军人物 LeCun 因为替 PULSE 说话,也不幸躺枪。
我倒是在想,以后美国科研的数据集是不是也得像美国电影一样,一部剧必须得有黑人演员才行,否则就算「政治不正确」。
扛着「政治正确」大旗的人们“口诛笔伐”异己,欲加之罪,何患无辞。
技术,有罪吗?

6 最后

  • PULSE 算法对于非数据集的数据,「脑补」效果一般。
  • 想用 PULSE 算法,“去除”人脸以外的马赛克图,需要建立数据集,重新训练模型。
作者:Jack Cui
原文:https://mp.weixin.qq.com/s/T5...
关注作者公众号,获取更多有趣AI应用~
imagy.png

系列篇


更多AIoT领域有趣的算法应用及产品请关注有趣的AIoT应用专栏。
推荐阅读
关注数
2144
内容数
24
介绍有趣好玩的AIoT 实战项目,算法应用及软硬件产品。
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息