AI学习者 · 2021年08月27日

RepVGG:VGG,永远的神! | 2021新文

RepVGG将训练推理网络结构进行独立设计,在训练时使用高精度的多分支网络学习权值,在推理时使用低延迟的单分支网络,然后通过结构重参数化将多分支网络的权值转移到单分支网络。RepVGG性能达到了SOTA,思路简单新颖,相信可以在上面做更多的工作来获得更好的性能。

论文: RepVGG: Making VGG-style ConvNets Great Again

image.png

Introduction

  目前,卷积网络的研究主要集中在结构的设计。复杂的结构尽管能带来更高的准确率,但也会带来推理速度的减慢。影响推理速度的因素有很多,计算量FLOPs往往不能准确地代表模型的实际速度,计算量较低的模型不一定计算更快。因此,VGG和ResNet依然在很多应用中得到重用。
  基于上述背景,论文提出了VGG风格的单分支网络结构RepVGG,能够比结构复杂的多分支网络更优秀,主要包含以下特点:

  • 模型跟VGG类似,不包含任何分支,无需保存过多的中间结果,内存占用少。
  • 模型仅包含卷积和ReLU,计算速度快。
  • 具体的网络结构(包括深度和宽度)不需要依靠自动搜索、人工调整以及复合缩放等复杂手段进行设计,十分灵活。

  当然,想要直接训练简单的单分支网络来达到与多分支网络一样的精度是很难的。由于多分支网络中的各个分支在训练时的权重变化不定,所以多分支网络可看作是大量简单网络的合集,而且其能够避免训练时的梯度弥散问题。虽然如此,但多分支网络会损害速度,所以论文打算训练时采用多分支网络,而推理时仍然使用单分支网络,通过新颖的结构性重参数化(structural re-parameterization)将多分支网络的权值转移到简单网络中。

Building RepVGG via Structural Re-param

image.png

Training-time Multi-branch Architecture

image.png

Re-param for Plain Inference-time Model

image.png
image.png
  上述的转换也可应用于identity分支,将identity mapping视作卷积核为单位矩阵的1x1卷积。
image.png
image.png

Architectural Specification

image.png
image.png
image.png

Experiment

image.png
image.png

  SOTA分类在120epoch训练的性能对比。
image.png

  200epoch带数据增强的分类性能对比。

image.png

  对比多分支效果。

image.png

  其它操作与结构重参数化的对比实验。

image.png

  作为分割任务的主干网络的表现。

Conclusion

  RepVGG将训练推理网络结构进行独立设计,在训练时使用高精度的多分支网络学习权值,在推理时使用低延迟的单分支网络,然后通过结构重参数化将多分支网络的权值转移到单分支网络。RepVGG性能达到了SOTA,思路简单新颖,相信可以在上面做更多的工作来获得更好的性能。



原文:晓飞的算法工程笔记
作者:VincentLee

推荐阅读

更多嵌入式AI技术相关内容请关注嵌入式AI专栏。
推荐阅读
关注数
18808
内容数
1352
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息