爱笑的小姐姐 · 2022年09月01日

苹果把NeRF玩出新高度:只需单个10s视频,就能重构人物动作和场景

文章来源:量子位 | 公众号 QbitAI

有了这个发明,以后演员拍戏再也不用抠图了?

答:可以直接一键合成。(手动狗头)

让我们赶紧来看看,这个由苹果最新研发的NeuMan框架:

只需输入一段10s左右的人物视频,就能合成该人物在新场景下做着各种新动作的影像。

前空翻?so easy!

640.gif

跳舞那也是不在话下。

这妖娆的舞姿,看来NeuMan心里也有一个舞魂~
640-2.gif

有网友看完就表示:喔~简直是电影界未来的发展方向。

image.png

全新场景渲染

在介绍NeuMan的原理之前,让我们再来欣赏几个酷炫的例子~

如下图所示,左上角是输入的训练视频,左下角是新的背景,右边则是合成后小哥在新背景下跳跃的效果。

640-3.gif

不仅是跳跃这种常规操作,广播体操也完全没问题。

640-4.gif

更厉害的是,NeuMan还可以将上面例子中的两个人合成到一起。

640-5.gif

再加上一个人,立马变成魔性的广场舞视频。

640-6.gif

这微笑的小表情,真的很难解释不是本人亲自跳的_(手动狗头)_。

那么话说回来,这个神奇的NeuMan背后的原理是什么呢?

基于NeRF的新突破

事实上,自从伯克利和谷歌联合打造的NeRF(Neural Radiance Fields神经辐射场)横空出世,各种重建三维场景的研究层出不穷。

NeuMan原理也是基于此,简单来说,就是用单个视频训练一个人物NeRF模型和一个场景NeRF模型,然后再合成在一起生成新的场景。

image.png

首先,在训练场景NeRF模型时,我们先从输入的视频中提取相机姿态、稀疏场景模型和多视角-立体深度图。

对于原视频中被人体遮挡的部分,则使用Mask R-CNN进行图像实体分割,将人体掩模膨胀4倍,以确保人体被完全遮蔽。此时,就能做到仅在背景上训练场景NeRF模型。

至于人体NeRF模型训练,研究人员引入了一种端到端的SMPL优化(end-to-end SMPL optimization)和纠错神经网络(error-correction network)。

SMPL(Skinned Multi-Person Linear Model)是一种基于顶点的人体三维模型,能够精确地表示人体的不同形状和姿态。

如下图所示,使用端到端的SMPL优化的人体模型,能够更好地表现人体的典型体积。

image.png

纠错神经网络则是用来弥补SMPL模型无法表达的细节。值得一提的是,它只在训练过程中使用,在进行全新场景渲染时会被放弃,以免造成过度拟合。

接下来,在两个模型对齐的阶段,研究人员先使用COLMAP解决任意尺度下的对齐问题。然后通过假设人类始终与地面有至少一个接触点,来进一步估计该场景的比例。

image.png

最后,再应用SMPL网格和场景的点云叠加,就形成了新图像的渲染效果。

image.png

最终成品显示,该场景NeRF模型方面模型能够有效地去除场景中的人类,并在有限的场景覆盖下生成高质量的新背景渲染图像。

image.png

人物NeRF模型方面也能很好的捕捉人体的细节,包括袖子、衣领甚至衣服拉链,甚至在渲染新动作时,能执行难度极大的侧翻动作。

image.png

值得一提的是,不同于现行的其他NeRF模型对训练视频要求很高,比如需要多个机位拍摄、曝光要保持不变、背景要干净等等,NeuMan的最大亮点是仅通过用户随意上传的单个视频就能达到同款效果。

image.png

并且,在分别输入六组不同的视频后,数据显示,与此前方法相比,NeuMan的方法生成的视频渲染质量最佳。

image.png

不过,研究团队也承认,NeuMan的设计目前还存在一些缺陷。

例如,由于人在活动时手势的变化细微又多变,因此生成视频中对手部细节的把握还不是很准确。

另外,在NeRF模型渲染时,由于系统假设人类始终与地面有至少一个接触点,因此NeuMan不能适用于人与地面接触为零的视频,比如人做后空翻的视频。

要想解决这个问题,需要更智能的几何推理知识,这也是未来研究的一个发展方向。

研究团队

这项研究由苹果机器学习研究中心和英属哥伦比亚大学合作完成。

第一作者Wei Jiang,是英属哥伦比亚大学计算机科学专业的一名四年级博士生,目前在苹果机器学习研究中心实习。

主要研究方向是新视角合成、视觉定位和三维视觉。

image.png

他还是英属哥伦比亚大学计算机视觉实验室的一员,导师是Kwang Moo Yi 教授。

硕士毕业于波士顿大学计算机科学专业,本科毕业于浙江工业大学软件工程专业。

参考链接:
[1]https://twitter.com/anuragranj/status/1559606408789708800
[2]https://arxiv.org/abs/2203.12575
[3]https://machinelearning.apple.com/research/neural-human-radiance-field
[4]https://github.com/apple/ml-neuman
[5]https://jiangwei221.github.io/

作者:关注前沿科技
文章来源:量子位

推荐阅读

更多嵌入式AI干货请关注 嵌入式AI 专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。
推荐阅读
关注数
18838
内容数
1371
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息