地瓜机器人 · 2022年12月19日 · 江苏

手语翻译系统系列之使用旭日X3派实时识别播报手语

一、准备工作

硬件部分:旭日X3派,USB免驱摄像头,电源适配器,烧录Ubuntu系统的SD卡,USB扬声器,显示屏(或者VNC/SSH远程连接)

软件部分:Thonny IDE集成开发环境

1.jfif

首先,关于Ubuntu系统镜像的烧录官方有详细的教程,这里不再赘述,我自己是选择桌面Ubuntu 20.04,大家选择最新的即可。如果是第一次进入系统,记得使用命令行更新一下软件源等,使用快捷键ctrl+alt+T打开命令行,输入以下命令:

# 更新软件源
apt-get update

# 更新升级所有软件
apt-get upgrade

接下来就可以开始安装Thonny IDE,作为一款轻量化的python集成开发环境,对新手十分友好,简单易上手,后续安装各种python依赖库也相当方便。安装方式Thonny官方网址提供了三种Linux的命令行下载方式,大家可以根据自己的情况进行选择。

flatpak install org.thonny.Thonny //Flatpak

sudo apt install thonny  //Debian,Raspbian,Ubuntu,Mintand others

sudo dnf install thonny  //FedoraFedora

耐心等待程序安装即可,如果中途出现异常大概率是网络不稳定导致,检查网络连接并再次运行命令行即可。由于Ubuntu系统不会自动生成快捷方式,所以安装成功后在命令行输入Thonny即可启动IDE。

重头戏来了,安装项目依赖库。启动Thonny IDE后,选择左上方工具>>管理包,根据附件中提供的程序开始安装python依赖库。过程可能会比较漫长,这取决于当前网络情况,还有部分库文件可能会出现下载失败的情况,请耐心多尝试几次。

2.jfif

import os
import threading
import cv2
import mediapipe as mp
import time
import torch as t
from model import HandModel
from tools.landmark_handle import landmark_handle
from tools.draw_landmarks import draw_landmarks
from tools.draw_bounding_rect import draw_bounding_rect
import numpy as np
from tools.draw_rect_text import draw_rect_txt
from PIL import Image, ImageFont, ImageDraw
import pyttsx3

# 大家可以根据这个来添加项目依赖

(PS.cv2是opencv-python的缩写,在import的时候采用这种缩写,但添加库的时候不能直接搜索cv2,而是要打全称opencv-python。)

二、实现原理

智能手语识别系统共包括语音播报模块,模型训练模块,手势识别模块,文字转写模块,一共可识别播报“也”、“吸引”、“美丽的”、 “相信”、“的”、“怀疑”、“梦想”、“表达”、“眼睛”、 “给”、“很难”、“有”、“许多”、“我”、“方法”、“不”, “只有”、“超过”、“请”、“放”、“说”、“微笑”、“星星”、“十分”、“看”、“你”等27个国家通用手语。

model_path = 'checkpoints/model_test1.pth'

label = ["也", "吸引", "美丽的", "相信", "的", "怀疑", "梦想", "表达", "眼睛", "给", "很难","有","许多","我", "方法", "不", "只有", "结束", "请", "放", "说", "微信", "星星", "十分","看","你"]

语音播报模块采用pyttsx3第三方库,它是一个用于文字转语音的第三方python库,还可实现对音量,声源,语速的调整,可脱机工作,兼容python2和python3。

def run():
    str_show = this_label
    star_date = open("2.txt", "w", encoding="utf-8")
    star_date.write(str_show)
    star_date.close()
    star_data = open("2.txt", "r", encoding="utf-8")
    star_read = star_data.readlines()
    star_data.close()
    file = "2.txt"
    res = open(file, encoding="utf-8").read()
    engine = pyttsx3.init()
    content = res
    engine.say(content)
    engine.runAndWait()
    time.sleep(1)

模型训练模块采用torch第三方库,torch广泛运用深度学习。它能够帮助我们构建深度学习项目,强调灵活性,而且允许使用我们习惯的python表示方法来表达深度学习模型。算力高,易学习,比较容易入门。

# 模型保存地址
targetX = [0 for xx in range(label_num)]
target = []
for xx in range(label_num):
    target_this = copy.deepcopy(targetX)
    target_this[xx] = 1
    target.append(target_this)
# 独热码

lr = 1e-3  # learning rate
model_saved = 'checkpoints/model'

# 模型定义
model = HandModel()
optimizer = t.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()

loss_meter = meter.AverageValueMeter()

epochs = 40
for epoch in range(epochs):
    print("epoch:" + str(epoch))
    loss_meter.reset()
    count = 0
    allnum = 1
    for i in range(len(label)):
        data = np.load('./npz_files/' + label[i] + ".npz", allow_pickle=True)
        data = data['data']

        for j in range(len(data)):
            xdata = t.tensor(data[j])
            optimizer.zero_grad()
            this_target = t.tensor(target[i]).float()
            input_, this_target = Variable(xdata), Variable(this_target)

            output = model(input_)

            outLabel = label[output.tolist().index(max(output))]
            targetIndex = target[i].index(1)
            targetLabel = label[targetIndex]
            if targetLabel == outLabel:
                count += 1
            allnum += 1

            output = t.unsqueeze(output, 0)
            this_target = t.unsqueeze(this_target, 0)

            loss = criterion(output, this_target)
            loss.backward()
            optimizer.step()
            loss_meter.add(loss.data)

    print("correct_rate:", str(count / allnum))

    t.save(model.state_dict(), '%s_%s.pth' % (model_saved, epoch))

准备好数据集就可以开始进行模型训练,模型推荐在电脑上进行训练,我自己的电脑是win10的系统,用的pycharm IDE的集成开发环境,如果只是想体验一下的话也可以直接使用附件里训练好的模型。

3.png

手势识别模块采用Mediapipe和OpenCV库对人手进行特征提取与骨骼绑定,旭日X3派根据摄像头捕捉的关键帧的进行特征提取,基于PyTorch模型进行推理,并将推理翻译结果显示到屏幕上,同时将翻译结果以txt文件形式进行保存和API接入后上传到百度语音开发平台,由平台进行人声的合成,然后将生成的mp3文件下载到旭日X3派终端用扬声器进行播放,实现了为语言障碍人士发声,为“碍”发声。

# 百度大脑AI开放平台API接入实现语音合成的示例

def fetch_token():
    print("fetch token begin")
    params = {'grant_type': 'client_credentials',
              'client_id': API_KEY,
              'client_secret': SECRET_KEY}
    post_data = urlencode(params)
    if (IS_PY3):
        post_data = post_data.encode('utf-8')
    req = Request(TOKEN_URL, post_data)
    try:
        f = urlopen(req, timeout=5)
        result_str = f.read()
    except URLError as err:
        print('token http response http code : ' + str(err.code))
        result_str = err.read()
    if (IS_PY3):
        result_str = result_str.decode()

    print(result_str)
    result = json.loads(result_str)
    print(result)
    if ('access_token' in result.keys() and 'scope' in result.keys()):
        if not SCOPE in result['scope'].split(' '):
            raise DemoError('scope is not correct')
        print('SUCCESS WITH TOKEN: %s ; EXPIRES IN SECONDS: %s' % (result['access_token'], result['expires_in']))
        return result['access_token']
    else:
        raise DemoError('MAYBE API_KEY or SECRET_KEY not correct: access_token or scope not found in token response')


"""  TOKEN end """

if __name__ == '__main__':
    token = fetch_token()
    tex = quote_plus(TEXT)  # 此处TEXT需要两次urlencode
    print(tex)
    params = {'tok': token, 'tex': tex, 'per': PER, 'spd': SPD, 'pit': PIT, 'vol': VOL, 'aue': AUE, 'cuid': CUID,
              'lan': 'zh', 'ctp': 1}  # lan ctp 固定参数

    data = urlencode(params)
    print('test on Web Browser' + TTS_URL + '?' + data)

    req = Request(TTS_URL, data.encode('utf-8'))
    has_error = False
    try:
        f = urlopen(req)
        result_str = f.read()

        headers = dict((name.lower(), value) for name, value in f.headers.items())

        has_error = ('content-type' not in headers.keys() or headers['content-type'].find('audio/') < 0)
    except  URLError as err:
        print('asr http response http code : ' + str(err.code))
        result_str = err.read()
        has_error = True

    save_file = "error.txt" if has_error else 'result.' + FORMAT
    with open(save_file, 'wb') as of:
        of.write(result_str)

    if has_error:
        if (IS_PY3):
            result_str = str(result_str, 'utf-8')
        print("tts api  error:" + result_str)

    print("result saved as :" + save_file)
# 骨架绑定的可视化

draw_landmarks(frame, hand_local)
brect = draw_bounding_rect(frame, hand_local)

4.png

文字转写模块通过旭日X3派外接麦克风进行收音,API接入后将录制的mp3文件上传,通过云端语音平台实时转写为文字后显示到旭日X3派终端的屏幕上。最后利用python的多线程将手势识别,语音播报,文字转写同时运行,至此,实现了聋哑人士与普通人的双向无障碍沟通交流。

三、效果展示

得益于旭日X3派的强大算力,系统对手势的识别展示并播报十分灵敏,画面流程度也得到保障(温馨提示:长时间运行请准备小风扇给开发板降温哦)。

5.jfif
6.jfif

四、性能测试

系统测试方案:将训练好模型导入旭日X3派中,接入电源后等待初始化完成,由小组成员们随机在镜头前做出27个国家通用手语,将翻译终端识别播报的准确率记录,同时将识别的总时长记录收集。

测试数据如下:

7.jfif
8.jfif

结果分析:实验数据表明,27个国家通用手语随机检验的识别准确率均在90%以上,单次执行时间也均在1秒之内。

结论:手语翻译终端有很高的实时性,充分保障聋哑残障人士的无障碍沟通交流。

本文转自地平线开发者社区
原作者:鑫辰大海王
原链接:(完整文档及代码点击此处一键直达)
推荐阅读
关注数
1255
内容数
71
我是地瓜机器人,为加速智能生长而来
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息