vesperW · 2023年03月20日

Native Memory Tracking 详解(3):追踪区域分析(二)

上篇文章 Native Memory Tracking 详解(2):追踪区域分析(一) 中,分享了NMT追踪区域的部分内存类型——Java heap、Class、Thread、Code 以及 GC,本篇图文将介绍追踪区域的其它内存类型以及 NMT 无法追踪的内存。

4.6 Compiler

Compiler 就是 JIT 编译器线程在编译 code 时本身所使用的内存。查看 NMT 详情:

`[0x0000ffff93e3acc0] Thread::allocate(unsigned long, bool, MemoryType)+0x348
[0x0000ffff9377a498] CompileBroker::make_compiler_thread(char const, CompileQueue, CompilerCounters, AbstractCompiler, Thread*)+0x120
[0x0000ffff9377ce98] CompileBroker::init_compiler_threads(int, int)+0x148
[0x0000ffff9377d400] CompileBroker::compilation_init()+0xc8
                             (malloc=37KB type=Thread #12)
`

跟踪调用链路:InitializeJVM ->
Threads::create_vm ->
CompileBroker::compilation_init ->
CompileBroker::init_compiler_threads ->
CompileBroker::make_compiler_thread

发现最后 make_compiler_thread 的线程的个数是在 compilation_init() 中计算的:

`# hotspot/src/share/vm/compiler/CompileBroker.cpp

void CompileBroker::compilation_init() {
  ......
  // No need to initialize compilation system if we do not use it.
  if (!UseCompiler) {
    return;
  }

ifndef SHARK

  // Set the interface to the current compiler(s).
  int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
  int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
  ......
  // Start the CompilerThreads
  init_compiler_threads(c1_count, c2_count);
  ......
}
`

追溯 c1_count、c2_count 的计算逻辑,首先在 JVM 初始化的时候(Threads::create_vm -> init_globals -> compilationPolicy_init)要设置编译的策略 CompilationPolicy:

`# hotspot/src/share/vm/runtime/arguments.cpp

void Arguments::set_tiered_flags() {
  // With tiered, set default policy to AdvancedThresholdPolicy, which is 3.
  if (FLAG_IS_DEFAULT(CompilationPolicyChoice)) {
    FLAG_SET_DEFAULT(CompilationPolicyChoice, 3);
  }
  ......
}

 hotspot/src/share/vm/runtime/compilationPolicy.cpp

// Determine compilation policy based on command line argument
void compilationPolicy_init() {
  CompilationPolicy::set_in_vm_startup(DelayCompilationDuringStartup);

  switch(CompilationPolicyChoice) {
  ......
  case 3:

ifdef TIERED

    CompilationPolicy::set_policy(new AdvancedThresholdPolicy());

else

    Unimplemented();

endif

    break;
  ......
  CompilationPolicy::policy()->initialize();
}
`

此时我们默认开启了分层编译,所以 CompilationPolicyChoice 为 3 ,编译策略选用的是 AdvancedThresholdPolicy,查看相关源码(compilationPolicy_init -> AdvancedThresholdPolicy::initialize):

`# hotspot/src/share/vm/runtime/advancedThresholdPolicy.cpp

void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_int(os::active_processor_count());
    int loglog_cpu = log2_int(MAX2(log_cpu, 1));
    count = MAX2(log_cpu  loglog_cpu, 1)  3 / 2;
  }

  set_c1_count(MAX2(count / 3, 1));
  set_c2_count(MAX2(count - c1_count(), 1));
  ......
}
`

我们可以发现,在未手动设置 -XX:CICompilerCountPerCPU 和 -XX:CICompilerCount 这两个参数的时候,JVM 会启动 CICompilerCountPerCPU ,启动编译线程的数目会根据 CPU 数重新计算而不再使用默认的 CICompilerCount 的值(3),计算公式通常情况下为 log n * log log n * 1.5(log 以 2 为底),此时笔者使用的机器有 64 个 CPU,经过计算得出编译线程的数目为 18。计算出编译线程的总数目之后,再按 1:2 的比例分别分配给 C1、C2,即我们上文所求的 c1_count、c2_count。

使用 jinfo -flag CICompilerCount 来验证此时 JVM 进程的编译线程数目:

`jinfo -flag CICompilerCount <pid>

-XX:CICompilerCount=18
`

所以我们可以通过显式的设置 -XX:CICompilerCount 来控制 JVM 开启编译线程的数目,从而限制 Compiler 部分所使用的内存(当然这部分内存比较小)。

我们还可以通过 -XX:-TieredCompilation 关闭分层编译来降低内存使用,当然是否关闭分层编译取决于实际的业务需求,节省的这点内存实在微乎其微。

编译线程也是线程,所以我们还可以通过 -XX:VMThreadStackSize 设置一个更小的值来节省此部分内存,但是削减虚拟机线程的堆栈大小是危险的操作,并不建议去因为此设置这个参数。

4.7 Internal

Internal 包含命令行解析器使用的内存、JVMTI、PerfData 以及 Unsafe 分配的内存等等。

其中命令行解释器就是在初始化创建虚拟机时对 JVM 的命令行参数加以解析并执行相应的操作,如对参数 -XX:NativeMemoryTracking=detail 进行解析。

JVMTI(JVM Tool Interface)是开发和监视 JVM 所使用的编程接口。它提供了一些方法去检查 JVM 状态和控制 JVM 的运行,详情可以查看 JVMTI官方文档 [1]。

PerfData 是 JVM 中用来记录一些指标数据的文件,如果开启 -XX:+UsePerfData(默认开启),JVM 会通过 mmap 的方式(即使用上文中提到的 os::reserve\_memory 和 os::commit\_memory)去映射到 {tmpdir}/hsperfdata_<username>/pid 文件中,jstat 通过读取 PerfData 中的数据来展示 JVM 进程中的各种指标信息.

需要注意的是, {tmpdir}/hsperfdata_<username>/pid{tmpdir}/.java_pid 并不是一个东西,后者是在 Attach 机制中用来通讯的,类似一种 Unix Domain Socket 的思想,不过真正的 Unix Domain Socket(JEP380 [2])在 JDK16 中才支持。

我们在操作 nio 时经常使用 ByteBuffer ,其中 ByteBuffer.allocateDirect / DirectByteBuffer 会通过 unsafe.allocateMemory 的方式来 malloc 分配 naive memory,虽然 DirectByteBuffer 本身还是存放于 Heap 堆中,但是它对应的 address 映射的却是分配在堆外内存的 native memory,NMT 会将 Unsafe_AllocateMemory 方式分配的内存记录在 Internal 之中(jstat 也是通过 ByteBuffer 的方式来使用 PerfData)。

需要注意的是,Unsafe_AllocateMemory 分配的内存在 JDK11之前,在 NMT 中都属于 Internal,但是在 JDK11 之后被 NMT 归属到 Other 中。例如相同 ByteBuffer.allocateDirect 在 JDK11 中进行追踪:[0x0000ffff8c0b4a60] Unsafe_AllocateMemory0+0x60`[0x0000ffff6b822fbc] (malloc=393218KB type=Other #3)`

简单查看下相关源码:

`# ByteBuffer.java
    public static ByteBuffer allocateDirect(int capacity) {
        return new DirectByteBuffer(capacity);
    }

 DirectByteBuffer.java

  DirectByteBuffer(int cap) {                   // package-private
        ......
        long base = 0;
        try {
            base = unsafe.allocateMemory(size);
        }
       ......

 Unsafe.java

  public native long allocateMemory(long bytes);

 hotspot/src/share/vm/prims/unsafe.cpp

UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory(JNIEnv *env, jobject unsafe, jlong size))
  UnsafeWrapper("Unsafe_AllocateMemory");
  size_t sz = (size_t)size;
  ......
  sz = round_to(sz, HeapWordSize);
  void* x = os::malloc(sz, mtInternal);
  ......
UNSAFE_END

`

一般情况下,命令行解释器、JVMTI等方式不会申请太大的内存,我们需要注意的是通过 Unsafe\_AllocateMemory 方式申请的堆外内存(如业务使用了 Netty ),可以通过一个简单的示例来进行验证,这个示例的 JVM 启动参数为:-Xmx1G -Xms1G -XX:+UseG1GC -XX:MaxMetaspaceSize=256M -XX:ReservedCodeCacheSize=256M -XX:NativeMemoryTracking=detail(去除了 -XX:MaxDirectMemorySize=256M 的限制):

`import java.nio.ByteBuffer;

public class ByteBufferTest {

    private static int _1M = 1024 * 1024;
    private static ByteBuffer allocateBuffer_1 = ByteBuffer.allocateDirect(128 * _1M);
    private static ByteBuffer allocateBuffer_2 = ByteBuffer.allocateDirect(256 * _1M);

    public static void main(String[] args) throws Exception {
        System.out.println("MaxDirect memory: " + sun.misc.VM.maxDirectMemory() + " bytes");
        System.out.println("Direct allocation: " + (allocateBuffer_1.capacity() + allocateBuffer_2.capacity()) + " bytes");
        System.out.println("Native memory used: " + sun.misc.SharedSecrets.getJavaNioAccess().getDirectBufferPool().getMemoryUsed() + " bytes");
        Thread.sleep(6000000);
    }
}
`

查看输出:

`MaxDirect memory: 1073741824 bytes
Direct allocation: 402653184 bytes
Native memory used: 402653184 bytes
`

查看 NMT 详情:

`-                  Internal (reserved=405202KB, committed=405202KB)
                            (malloc=405170KB #3605) 
                            (mmap: reserved=32KB, committed=32KB) 
                   ......
                   [0x0000ffffbb599190] Unsafe_AllocateMemory+0x1c0
                   [0x0000ffffa40157a8]
                             (malloc=393216KB type=Internal #2)
                   ......
                   [0x0000ffffbb04b3f8] GenericGrowableArray::raw_allocate(int)+0x188
                   [0x0000ffffbb4339d8] PerfDataManager::add_item(PerfData*, bool) [clone .constprop.16]+0x108
                   [0x0000ffffbb434118] PerfDataManager::create_string_variable(CounterNS, char const, int, char const, Thread*)+0x178
                   [0x0000ffffbae9d400] CompilerCounters::CompilerCounters(char const, int, Thread) [clone .part.78]+0xb0
                             (malloc=3KB type=Internal #1)
                   ......
`

可以发现,我们在代码中使用 ByteBuffer.allocateDirect(内部也是使用 new DirectByteBuffer(capacity))的方式,即 Unsafe\_AllocateMemory 申请的堆外内存被 NMT 以 Internal 的方式记录了下来:(128 M + 256 M)= 384 M = 393216 KB = 402653184 Bytes。

当然我们可以使用参数 -XX:MaxDirectMemorySize 来限制 Direct Buffer 申请的最大内存。

4.8 Symbol

Symbol 为 JVM 中的符号表所使用的内存,HotSpot中符号表主要有两种:SymbolTableStringTable

大家都知道 Java 的类在编译之后会生成 Constant pool 常量池,常量池中会有很多的字符串常量,HotSpot 出于节省内存的考虑,往往会将这些字符串常量作为一个 Symbol 对象存入一个 HashTable 的表结构中即 SymbolTable,如果该字符串可以在 SymbolTable 中 lookup(SymbolTable::lookup)到,那么就会重用该字符串,如果找不到才会创建新的 Symbol(SymbolTable::new\_symbol)。

当然除了 SymbolTable,还有它的双胞胎兄弟 StringTable(StringTable 结构与 SymbolTable 基本是一致的,都是 HashTable 的结构),即我们常说的字符串常量池。平时做业务开发和 StringTable 打交道会更多一些,HotSpot 也是基于节省内存的考虑为我们提供了 StringTable,我们可以通过 String.intern 的方式将字符串放入 StringTable 中来重用字符串。

编写一个简单的示例:

`public class StringTableTest {
    public static void main(String[] args) throws Exception {
        while (true){
            String str = new String("StringTestData_" + System.currentTimeMillis());
            str.intern();
        }
    }
}
`

启动程序后我们可以使用 jcmd <pid> VM.native_memory baseline 来创建一个基线方便对比,稍作等待后再使用 jcmd <pid> VM.native_memory summary.diff/detail.diff 与创建的基线作对比,对比后我们可以发现:

`Total: reserved=2831553KB +20095KB, committed=1515457KB +20095KB
......
-                    Symbol (reserved=18991KB +17144KB, committed=18991KB +17144KB)
                            (malloc=18504KB +17144KB #2307 +2143)
                            (arena=488KB #1)
......
[0x0000ffffa2aef4a8] BasicHashtable<(MemoryType)9>::new_entry(unsigned int)+0x1a0
[0x0000ffffa2aef558] Hashtable<oopDesc, (MemoryType)9>::new_entry(unsigned int, oopDesc)+0x28
[0x0000ffffa2fbff78] StringTable::basic_add(int, Handle, unsigned short, int, unsigned int, Thread)+0xe0
[0x0000ffffa2fc0548] StringTable::intern(Handle, unsigned short, int, Thread)+0x1a0
                             (malloc=17592KB type=Symbol +17144KB #2199 +2143)
......
`

JVM 进程这段时间内存一共增长了 20095KB,其中绝大部分都是 Symbol 申请的内存(17144KB),查看具体的申请信息正是 StringTable::intern 在不断的申请内存。

如果我们的程序错误的使用 String.intern() 或者 JDK intern 相关 BUG 导致了内存异常,可以通过这种方式轻松协助定位出来。

需要注意的是,虚拟机提供的参数 -XX:StringTableSize 并不是来限制 StringTable 最大申请的内存大小的,而是用来限制 StringTable 的表的长度的,我们加上 -XX:StringTableSize=10M 来重新启动 JVM 进程,一段时间后查看 NMT 追踪情况:

`-                    Symbol (reserved=100859KB +17416KB, committed=100859KB +17416KB)
                            (malloc=100371KB +17416KB #2359 +2177)
                            (arena=488KB #1)
......
[0x0000ffffa30c14a8] BasicHashtable<(MemoryType)9>::new_entry(unsigned int)+0x1a0
[0x0000ffffa30c1558] Hashtable<oopDesc, (MemoryType)9>::new_entry(unsigned int, oopDesc)+0x28
[0x0000ffffa3591f78] StringTable::basic_add(int, Handle, unsigned short, int, unsigned int, Thread)+0xe0
[0x0000ffffa3592548] StringTable::intern(Handle, unsigned short, int, Thread)+0x1a0
                             (malloc=18008KB type=Symbol +17416KB #2251 +2177)

`

可以发现 StringTable 的大小是超过 10M 的,查看该参数的作用:

`# hotsopt/src/share/vm/classfile/symnolTable.hpp

  StringTable() : RehashableHashtable<oop, mtSymbol>((int)StringTableSize,
                              sizeof (HashtableEntry<oop, mtSymbol>)) {}

  StringTable(HashtableBucket<mtSymbol>* t, int number_of_entries)
    : RehashableHashtable<oop, mtSymbol>((int)StringTableSize, sizeof (HashtableEntry<oop, mtSymbol>), t,
                     number_of_entries) {}

`

因为 StringTable 在 HotSpot 中是以 HashTable 的形式存储的,所以 -XX:StringTableSize 参数设置的其实是 HashTable 的长度,如果该值设置的过小的话,即使 HashTable 进行 rehash,hash 冲突也会十分频繁,会造成性能劣化并有可能导致进入 SafePoint 的时间增长。如果发生这种情况,可以调大该值。

  • -XX:StringTableSize 在 32 位系统默认为 1009、64 位默认为 60013 :const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
  • G1中可以使用 -XX:+UseStringDeduplication 参数来开启字符串自动去重功能(默认关闭),并使用 -XX:StringDeduplicationAgeThreshold 来控制字符串参与去重的 GC 年龄阈值。
  • 与 -XX:StringTableSize 同理,我们可以通过 -XX:SymbolTableSize 来控制 SymbolTable 表的长度。

如果我们使用的是 JDK11 之后的 NMT,我们可以直接通过命令 jcmd <pid> VM.stringtablejcmd <pid> VM.symboltable 来查看两者的使用情况:

`StringTable statistics:
Number of buckets       :  16777216 = 134217728 bytes, each 8
Number of entries       :     39703 =    635248 bytes, each 16
Number of literals      :     39703 =   2849304 bytes, avg  71.765
Total footprsize_t         :           = 137702280 bytes
Average bucket size     :     0.002
Variance of bucket size :     0.002
Std. dev. of bucket size:     0.049
Maximum bucket size     :         2

SymbolTable statistics:
Number of buckets       :     20011 =    160088 bytes, each 8
Number of entries       :     20133 =    483192 bytes, each 24
Number of literals      :     20133 =    753832 bytes, avg  37.443
Total footprint         :           =   1397112 bytes
Average bucket size     :     1.006
Variance of bucket size :     1.013
Std. dev. of bucket size:     1.006
Maximum bucket size     :         9
`

4.9 Native Memory Tracking

Native Memory Tracking 使用的内存就是 JVM 进程开启 NMT 功能后,NMT 功能自身所申请的内存。

查看源码会发现,JVM 会在 MemTracker::init() 初始化的时候,使用 tracking\_level() -> init\_tracking\_level() 获取我们设定的 tracking\_level 追踪等级(如:summary、detail),然后将获取到的 level 分别传入 MallocTracker::initialize(level) 与 VirtualMemoryTracker::initialize(level) 进行判断,只有 level >= summary 的情况下,虚拟机才会分配 NMT 自身所用到的内存,如:VirtualMemoryTracker、MallocMemorySummary、MallocSiteTable(detail 时才会创建) 等来记录 NMT 追踪的各种数据。

`# /hotspot/src/share/vm/services/memTracker.cpp
void MemTracker::init() {
  NMT_TrackingLevel level = tracking_level();
  ......
}

 /hotspot/src/share/vm/services/memTracker.hpp

static inline NMT_TrackingLevel tracking_level() {
    if (_tracking_level == NMT_unknown) {
      // No fencing is needed here, since JVM is in single-threaded
      // mode.
      _tracking_level = init_tracking_level();
      _cmdline_tracking_level = _tracking_level;
    }
    return _tracking_level;
  }

 /hotspot/src/share/vm/services/memTracker.cpp

NMT_TrackingLevel MemTracker::init_tracking_level() {
  NMT_TrackingLevel level = NMT_off;
  ......
  if (os::getenv(buf, nmt_option, sizeof(nmt_option))) {
    if (strcmp(nmt_option, "summary") == 0) {
      level = NMT_summary;
    } else if (strcmp(nmt_option, "detail") == 0) {

if PLATFORM_NATIVE_STACK_WALKING_SUPPORTED

      level = NMT_detail;

else

      level = NMT_summary;

endif // PLATFORM_NATIVE_STACK_WALKING_SUPPORTED

    } 
   ......
  }
  ......
  if (!MallocTracker::initialize(level) ||
      !VirtualMemoryTracker::initialize(level)) {
    level = NMT_off;
  }
  return level;
}
  

 /hotspot/src/share/vm/services/memTracker.cpp

bool MallocTracker::initialize(NMT_TrackingLevel level) {
  if (level >= NMT_summary) {
    MallocMemorySummary::initialize();
  }

  if (level == NMT_detail) {
    return MallocSiteTable::initialize();
  }
  return true;
}
void MallocMemorySummary::initialize() {
  assert(sizeof(_snapshot) >= sizeof(MallocMemorySnapshot), "Sanity Check");
  // Uses placement new operator to initialize static area.
  ::new ((void*)_snapshot)MallocMemorySnapshot();
}
  

 

bool VirtualMemoryTracker::initialize(NMT_TrackingLevel level) {
  if (level >= NMT_summary) {
    VirtualMemorySummary::initialize();
  }
  return true;
}

`

我们执行的 jcmd <pid> VM.native_memory summary/detail 命令,就会使用 NMTDCmd::report 方法来根据等级的不同获取不同的数据:

  • summary 时使用 MemSummaryReporter::report() 获取 VirtualMemoryTracker、MallocMemorySummary 等储存的数据;
  • detail 时使用 MemDetailReporter::report() 获取 VirtualMemoryTracker、MallocMemorySummary、MallocSiteTable 等储存的数据。

`# hotspot/src/share/vm/services/nmtDCmd.cpp
  
void NMTDCmd::execute(DCmdSource source, TRAPS) {
  ......
  if (_summary.value()) {
    report(true, scale_unit);
  } else if (_detail.value()) {
    if (!check_detail_tracking_level(output())) {
      return;
    }
    report(false, scale_unit);
  }
  ......
}
  
void NMTDCmd::report(bool summaryOnly, size_t scale_unit) {
  MemBaseline baseline;
  if (baseline.baseline(summaryOnly)) {
    if (summaryOnly) {
      MemSummaryReporter rpt(baseline, output(), scale_unit);
      rpt.report();
    } else {
      MemDetailReporter rpt(baseline, output(), scale_unit);
      rpt.report();
    }
  }
}
`

一般 NMT 自身占用的内存是比较小的,不需要太过关心。

4.10 Arena Chunk

Arena 是 JVM 分配的一些 Chunk(内存块),当退出作用域或离开代码区域时,内存将从这些 Chunk 中释放出来。然后这些 Chunk 就可以在其他子系统中重用. 需要注意的是,此时统计的 Arena 与 Chunk ,是 HotSpot 自己定义的 Arena、Chunk,而不是 Glibc 中相关的 Arena 与 Chunk 的概念。

我们会发现 NMT 详情中会有很多关于 Arena Chunk 的分配信息都是:

`[0x0000ffff935906e0] ChunkPool::allocate(unsigned long, AllocFailStrategy::AllocFailEnum)+0x158
[0x0000ffff9358ec14] Arena::Arena(MemoryType, unsigned long)+0x18c
......
`

JVM 中通过 ChunkPool 来管理重用这些 Chunk,比如我们在创建线程时:

`# /hotspot/src/share/vm/runtime/thread.cpp

Thread::Thread() {
  ......
  set_resource_area(new (mtThread)ResourceArea());
  ......
  set_handle_area(new (mtThread) HandleArea(NULL));
  ......
`

其中 ResourceArea 属于给线程分配的一个资源空间,一般 ResourceObj 都存放于此(如 C1/C2 优化时需要访问的运行时信息);HandleArea 则用来存放线程所持有的句柄(handle),使用句柄来关联使用的对象。这两者都会去申请 Arena,而 Arena 则会通过 ChunkPool::allocate 来申请一个新的 Chunk 内存块。除此之外,JVM 进程用到 Arena 的地方还有非常多,比如 JMX、OopMap 等等一些相关的操作都会用到 ChunkPool。

眼尖的读者可能会注意到上文中提到,通常情况下会通过 ChunkPool::allocate 的方式来申请 Chunk 内存块。是的,其实除了 ChunkPool::allocate 的方式, JVM 中还存在另外一种申请 Arena Chunk 的方式,即直接借助 Glibc 的 malloc 来申请内存,JVM 为我们提供了相关的控制参数 UseMallocOnly:

`develop(bool, UseMallocOnly, false,                                       \
          "Use only malloc/free for allocation (no resource area/arena)") 
`

我们可以发现这个参数是一个 develop 的参数,一般情况下我们是使用不到的,因为 VM option 'UseMallocOnly' is develop and is available only in debug version of VM,即我们只能在 debug 版本的 JVM 中才能开启该参数。

这里有的读者可能会有一个疑问,即是不是可以通过使用参数 -XX:+IgnoreUnrecognizedVMOptions(该参数开启之后可以允许 JVM 使用一些在 release 版本中不被允许使用的参数)的方式,在正常 release 版本的 JVM 中使用 UseMallocOnly 参数,很遗憾虽然我们可以通过这种方式开启 UseMallocOnly,但是实际上 UseMallocOnly 却不会生效,因为在源码中其逻辑如下:

`# hotspot/src/share/vm/memory/allocation.hpp

void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
    assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
    x = ARENA_ALIGN(x);
    //debug 版本限制
    debug_only(if (UseMallocOnly) return malloc(x);)
    if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
      return NULL;
    NOT_PRODUCT(inc_bytes_allocated(x);)
    if (_hwm + x > _max) {
      return grow(x, alloc_failmode);
    } else {
      char *old = _hwm;
      _hwm += x;
      return old;
    }
  }
`

可以发现,即使我们成功开启了 UseMallocOnly,也只有在 debug 版本(debug_only)的 JVM 中才能使用 malloc 的方式分配内存。

我们可以对比下,使用正常版本(release)的 JVM 添加 -XX:+IgnoreUnrecognizedVMOptions -XX:+UseMallocOnly 启动参数的 NMT 相关日志与使用 debug(fastdebug/slowdebug)版本的 JVM 添加 -XX:+UseMallocOnly 启动参数的 NMT 相关日志:

`# 正常 JVM ,启动参数添加:-XX:+IgnoreUnrecognizedVMOptions -XX:+UseMallocOnly
......
[0x0000ffffb7d16968] ChunkPool::allocate(unsigned long, AllocFailStrategy::AllocFailEnum)+0x158
[0x0000ffffb7d15f58] Arena::grow(unsigned long, AllocFailStrategy::AllocFailEnum)+0x50
[0x0000ffffb7fc4888] Dict::Dict(int ()(void const, void const), int ()(void const), Arena, int)+0x138
[0x0000ffffb85e5968] Type::Initialize_shared(Compile*)+0xb0
                             (malloc=32KB type=Arena Chunk #1)
......                             
`

`# debug版本 JVM ,启动参数添加:-XX:+UseMallocOnly
......
[0x0000ffff8dfae910] Arena::malloc(unsigned long)+0x74
[0x0000ffff8e2cb3b8] Arena::Amalloc_4(unsigned long, AllocFailStrategy::AllocFailEnum)+0x70
[0x0000ffff8e2c9d5c] Dict::Dict(int ()(void const, void const), int ()(void const), Arena, int)+0x19c
[0x0000ffff8e97c3d0] Type::Initialize_shared(Compile*)+0x9c
                             (malloc=5KB type=Arena Chunk #1)
......                             
`

我们可以清晰地观察到调用链的不同,即前者还是使用 ChunkPool::allocate 的方式来申请内存,而后者则使用 Arena::malloc 的方式来申请内存,查看 Arena::malloc 代码:

`# hotspot/src/share/vm/memory/allocation.cpp

void* Arena::malloc(size_t size) {
  assert(UseMallocOnly, "shouldn't call");
  // use malloc, but save pointer in res. area for later freeing
  char save = (char)internal_malloc_4(sizeof(char*));
  return (save = (char)os::malloc(size, mtChunk));
}
`

可以发现代码中通过 os::malloc 的方式来分配内存,同理释放内存时直接通过 os::free 即可,如 UseMallocOnly 中释放内存的相关代码:

`# hotspot/src/share/vm/memory/allocation.cpp

// debugging code
inline void Arena::free_all(char start, char end) {
  for (char* p = start; p < end; p++) if (p) os::free(*p);
}
`

虽然 JVM 为我们提供了两种方式来管理 Arena Chunk 的内存:

  1. 通过 ChunkPool 池化交由 JVM 自己管理;
  2. 直接通过 Glibc 的 malloc/free 来进行管理。

但是通常意义下我们只会用到第一种方式,并且一般 ChunkPool 管理的对象都比较小,整体来看 Arena Chunk 这块内存的使用不会很多。

4.11 Unknown

Unknown 则是下面几种情况

  • 当内存类别无法确定时;
  • 当 Arena 用作堆栈或值对象时;
  • 当类型信息尚未到达时。

5.NMT 无法追踪的内存

需要注意的是,NMT 只能跟踪 JVM 代码的内存分配情况,对于非 JVM 的内存分配是无法追踪到的。

  • 使用 JNI 调用的一些第三方 native code 申请的内存,比如使用 System.Loadlibrary 加载的一些库。
  • 标准的 Java Class Library,典型的,如文件流等相关操作(如:Files.list、ZipInputStream 和 DirectoryStream 等)。

可以使用操作系统的内存工具等协助排查,或者使用 LD\_PRELOAD malloc 函数的 hook/jemalloc/google-perftools(tcmalloc) 来代替 Glibc 的 malloc,协助追踪内存的分配。

由于篇幅有限,将在下篇文章给大家分享“使用 NMT 协助排查内存问题的案例”,敬请期待!

作者: 窦义望
文章来源:毕昇编译

推荐阅读

欢迎大家点赞留言,更多Arm技术文章动态请关注极术社区嵌入式客栈专栏欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。
推荐阅读
关注数
2895
内容数
295
分享一些在嵌入式应用开发方面的浅见,广交朋友
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息