18

腾讯技术工程 · 2023年12月13日

深入剖析开源大模型+Langchain框架智能问答系统性能下降原因

大模型(LLM)相关理论研究与工程实践随着 GPT3 的发布,在学术界、工业界大爆发,备受各行各业关注,并涌现出一些赋能行业、促进生产力、生产关系变革的实践。GPT3 [1] 以及斯坦福计算机学院近 100+ 教授联名论文 [2] 将大模型列为第三轮 AI 浪潮,相对于传统的机器学习与深度学习,以 GPT3 为例的大模型涌现出处理各类任务的新范式:zero-shot、few-shot、in-context 等,同时也支持深度学习领域的 finetune,新范式让大模型能够低成本、快速处理各种任务,极大的缩短了数据准备与工程开发流程。

其中,in-context 作为随着大模型涌现的范式,被大规模的应用到各种知识库问答、资料汇总等领域中,开源社区对 in-context 也非常活跃地响应,推出了 langchain [3]、向量数据库 [4] 等系列优秀框架与技术基座。但是,基于 langchain + 开源大模型在实践过程中也会遇到系列不尽人意的问题,本文将深入剖析 langchain + 开源大模型用于搭建基于公司语料库(iwiki、oncall、码客)上的缺陷,剖析利用开源方案进行实践过程中性能下降的根本原因。

常规方案

架构

image.png

图1 基于 langchain + LLM 做知识问答的常规方案

基于 langchain + 大模型 in-context 能力来搭建智能问答系统的常规方案如上图所示,包含 3 个核心模块:数据服务,在线 QA 服务,以及大模型。下面分别详细说明一下各个模块具体做些什么?他们是如何串联在一起完成整个问答任务的?再反过来看看为什么业界基于 openAI 实践很棒,而如果换成基于开源自研后性能下滑很多?

数据服务

数据对方案的性能影响极其重要,高质量的数据对模型的提升非常显著;但数据处理是一个 caseBycase、包含很多经验与 tricks 的事情,例如文档中的截图、表格、公式、超链接、附件、架构图、流程图、代码片段等等,本文不予以展开分析。

做数据最需要关注的是模型的输入及格式。做知识问答系统本质是自然语言处理的一个任务,因此,数据形态必须是文本,这是最基本的原则,所以如果数据包含非文本类的形态,例如图片(iwiki、码客、oncall 存在大量截图),就需要处理一下,每个人的处理方式和策略不一样,处理得好,最终系统性能会表现好一些。数据服务包含 3 个步骤,格式化(format)、切割(split)、向量化(vectorize)。

  • 格式化。解析不同源数据(csv、pdf、json、html、markdown、txt 等)到统一格式,并进行预处理与过滤

为什么以及如何进行预处理与过滤?

参考所选 LLM 在训练/ instruction finetune 处理数据方式(去掉特殊字符、换行空格等)同步处理数据。这么做的原因是 LLM in-context 应该和 训练/instruction finetune 的数据处理方式保持一致,可以保证 in-context 效果达到最佳。所以格式化的第二步,和选用的 LLM 相关。

  • 切割(split)。将格式化的长字符串按照一定策略切分为若干个切片(chunk)。

为什么要进行切割?

看到上述框架图绝大多数人应该有的一个疑问。如果深入思考的话会发现 embedding(text2vec,文本转化为向量)以及 LLM encoder 对输入 tokens 都有限制。embedding 会将一个 text(长字符串)的语义信息压缩成一个向量,这是他的能力,但我们需要重点关注他的局限性,其中之一就是 text 包含的 tokens 有限制,一段话压缩成一个向量是 ok,但一本书压缩成一个向量可能就丢失了绝大多数语义。LLM encoder tokens 的限制在模型结构(利用 next token 进行 pre train)是就定义了,后续也无法更改,而 in-context 本质是把语料注入到 prompt,整个 prompt 不能超过 LLM 的 tokens 限制, 汇总如下公式:

image.png

为了确保格式化的语料能够满足上述约束,因此需要切割原始语料。

如何切割?

通常采用固定长度切割(满足上面公式约束下),但固定长度切割容易破坏自然段落的语义,因此需要在上面公式约束与段落语义保留双重约束下,灵活设计方案,切割后的语料片段称为 chunk。

  • 向量化与存储。

为什么进行向量化?

NLP 领域近 10 年来最朴素最广泛应用的一个技术 embedding 就是将 text 的语义信息转为向量表达,从而基于此向量来处理 NLP 领域中的一系列任务,例如通过向量相似性来衡量两句话语义是否一致等。

向量化的评价指标有哪些?

Huggingface 有一个 embedding 的 benchmark,如链接: https://huggingface.co/spaces/mteb/leaderboard

image.png
图2 huggingface embedding 综合能力排序

业界通常用 embedding 所得向量长度及其在各 NLP 子任务上的准确率来评估 embedding 模型。原则上:embedding 所得向量长度越长越好,过长的向量也会造成 embedding 模型在训练中越难收敛。分类(Classification)、聚合 (Clustering)、语义相似 (Pair Classification)、排序(Reranking)和召回(Retrieval)等子任务常用来评估 embedding 模型的优劣,准确率越高,embedding 的性能越好。

向量如何存储与检索?

向量的存储与检索是一门特别复杂的课题,涉及向量检索(包含很多相似性度量算法,向量压缩等知识)和向量存储,当前火热的向量数据库方向就是因此而生,在规模不大的情况下用 faiss 做检索够用了,未来有机会将专题就这个点开展分析,这里不予以赘述

在线 QA 服务

在线 QA 服务是串联大模型与存储向量数据库之间的纽带,大模型不能将数据库所有数据拿去做 in-context,实际上,大模型 in-context 能包含的 chunks 十分有限,在线QA服务核心就是挑选出合适的 chunks 给大模型。在线 QA 服务通过企微、webapi等方式对外提供交互,包含 3 个核心功能模块:用户问题向量化、prompt 组装、筛选 chunks。其中,在线 QA 服务核心在于筛选 chunks,这一步对整体性能至关重要。

  • 用户问题向量化。

同数据服务 chunks 向量化一样,采用同一个 embedding 模型对用户问题进行向量化。

  • prompt 组装。

将用户问题,筛选出的 chunks 组装成 prompt,prompt 即为大模型的输入,整个 prompt 不超过大模型输入 tokens 长度的限制,以 openAI gpt-3.5-turbo 为例,输入 tokens 限制为 4096,假设每个 chunks 固定长度为400,不考虑 prompt 不变字符串的长度,gpt-3.5-turbo 最多可以放 10 个 chunks 进行 in-context 学习。

  • 筛选 chunks。

在用户问题与 chunks 经同一 embedding 模型将 text 转为向量:

image.png

(M 是 chunks 的总数量),langchain 给的方案是通过计算之间:

image.png

的相似度(cos、BM25、knn、欧氏距离等)并倒排来决定哪些 chunks 被召回。本质上前者是 Question,而后者是 Answer,因此 langchain 是利用了 embedding 在召回(Retrieval)任务上的能力来筛选 chunks, 如图 2 红色垂直列所示,这符合问答系统的初衷。非常值得注意的是:embedding 在召回任务上的准确率是其在所有 NLP 任务重最差的一个,QA 任务在语义空间上的表达远不如分类、聚合等任务。常规方案中,langchain 直接召回排序 top8 chunks 给大模型进行 in-context 推理 (gpt-3.5-turbo 4096 tokens)。

大模型

问答系统使用了 LLM in-context 的推理能力,将筛选出来的若干个 chunks 传给大模型,让大模型基于这些 chunks 来回答用户问题,有个限制是整个 prompt 的 tokens 长度不要超过 LLM 输入 tokens 限制,不然 GPU 会报 OOM。LLM in-context 的推理能力本质是其在阅读理解,因此,选择问答系统的 LLM 需要重点关注其在阅读理解任务上的性能,好的 LLM 可以非常精准的从一组 chunks 中寻找并总结出用户 query 对应的答案。

串联

将上述各功能模块的逻辑串联一起,从整体的视角观察一下 langchain + 大模型做问答系统整个方案的实践。

LLM 需要上游提供一些语料 chunks,结合 chunks、用户query、自身阅读理解能力完成知识问答。对问答准确率影响最大的因素是 chunks 的质量(是否包含正确答案),LLM 自身阅读理解能力。同时, LLM 输入 token 长度限制导致 prompt 中 chunks 的数量有一定约束,原则上,chunks 数量越多,包含正确答案的概率越大,同时也导致模型的推理速度变慢。

LLM 上游主要目的是召回出候选的 chunks,常规方案使用的是 embedding 处理召回任务的能力,对于一步召回直接注入到 prompt(无精排逻辑),假如传给 LLM prompt k 个 chunks,那么对于召回来说,只需要相似性算法倒序排序前 k 个 chunk 中包含正确答案即可,即关注 embedding 在召回任务中 TopK 的准确率。

综上所属,常规方案中对智能问答系统准确率影响最大的几个因素如下:

1、embedding 在 Retrieval 任务中 TopK 的准确率 (受 embedding 模型自身能力、Retrieval 算法、K等三个因素影响)

2、K 的大小,K 原则越大越好,但是 LLM 的 tokens 限制导致 K 由不能太大。

(上述 1、2 的都是为了从数据库海量 chunks 中选择出包含正确答案的 chunks)

3、LLM 自身阅读理解与总结推理能力。

openAI 与开源 LLM

为什么 langchain + openAI 全家桶准确率特别高,换成开源 LLM 性能下降很多?

使用 openAI 全家桶构建智能问答系统必用两个能力:openAI 的 embedding 与 gpt-3.5-turbo 模型。

图 2 huggingface embedding benchmark 中 openAI 发布的 text-embedding-ada-002 (2021/09 )最大输入 tokens 限制是 8191,输出维度是 1536,在 Retrieval 中 top1 的准确率是 49.25%。这组数据表明 openAI embedding 模型具有非常棒的语义表达能力,能够非常好的将问题、答案映射到相近的语义向量空间中,可以说该 embedding 模型是业界最强的映射 QA 能力的模型。

openAI 的商用模型 gpt-3.5-turbo 输入 tokens 限制为 4096,如果切片每个 chunks 长度为 400,embedding 可以召回近 10 个候选 chunks,即 text-embedding-ada-002 模型 top10 的准确率即可近似为问答系统的整体准确率(做信息流推荐召回排序的同学应该了解,top1 准确率接近50%,top10 的准确率会很惊人),而 gpt-3.5-turbo 自身的阅读理解也高出开源 LLM 一个水平,能够精准的从所有的 chunks 中找到准确答案。

综上: openAI 全家桶中 embedding 在 Retrieval 任务的高性能、gpt-3.5-turbo 的阅读理解能力,输入 tokens 够长等三个重要因素,是常规基于 langchain + openAI 做智能问答系统,用用户问题向量与语料内容向量进行相似性计算并直接召回给 prompt,最终能够取得非常好效果的重要原因。

openAI embedding 与 gpt-3.5-turbo 强劲性能掩盖了一些问题,这些问题在基于开源 LLM 做自研问答系统时被暴露,直接导致开源 LLM 方案性能下降。

openAI 全家桶与开源 LLM 方案的对比如下:

image.png

在 Retrieval 任务的语义关联映射上,openAI 的 embedding 模型能力远高于开源 LLM(15 个百分点以上);LLM token 的限制,导致采用 openAI 召回的 chunks 数量比开源 LLM 多一倍;同时在阅读理解能力上,gpt-3.5-turbo 能够非常好的从一系列 chunks 中找到并总结出最佳答案,而开源 LLM 在这方面能力稍微逊色一些。综上,选择目前开源最好的组合方案:llama 的 vicuna13B 与中文领域开源最好的 embedding 模型 GanymedeNil/text2vec-large-chinese · Hugging Face,采用常规的 langchain + openAI 技术框架,性能会下降很多。

总结

通过全文分析,总结出开源 LLM 大模型在 openAI + langchain 通用的技术方案下,性能不佳的原因主要如下:

  • 使用 Question-Answer (embedding Retrieval) 作为召回排序是性能不佳最根本的原因,开源的中文 embedding 模型在 Retrieval 任务上表现不佳。
  • 模型输入 tokens 限制导致候选的 chunks 数量少于 openAI 模型近一倍,是整体准确率低于 openAI 全家桶的一个重要原因。
  • 模型自身在阅读理解与总结任务上的不足,也对整体性能有一定的影响。

洞悉问题是进步的第一步,本文重点从 embedding 与 LLM 两个角度来剖析 langchain + 开源大模型搭建智能问答系统性能下降的原因,下篇也将从这两个角度逐步分析如何基于 lanchain + 开源大模型搭建高性能智能问答系统。

引文

[1] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.

[2] Bommasani R, Hudson D A, Adeli E, et al. On the opportunities and risks of foundation models[J]. arXiv preprint arXiv:2108.07258, 2021.

[3] GitHub - hwchase17/langchain: ⚡ Building applications with LLMs through composability ⚡

[4] GitHub - milvus-io/milvus: A cloud-native vector database, storage for next generation AI applications

作者:腾讯程序员
文章来源:腾讯技术工程

推荐阅读

更多腾讯AI相关技术干货,请关注专栏腾讯技术工程 欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。
推荐阅读
关注数
8153
内容数
237
腾讯AI,物联网等相关技术干货,欢迎关注
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息