10

给ChatGPT小费真的好使!10块或10万效果拔群,但给1毛不升反降

还有谁不知道“假装”给ChatGPT小费可以让它服务更卖力?

image.png

但你知道给多少最合适吗?

笑不活了,还真有人专门研究了一番。

方法简单粗暴,从0.1美元到100美元,不同额度用同样的prompt去尝试,每个额度试5次。

你别说,结果还真有讲究:

首先,给10美元性价比是最高的,甚至超过100美元。

image.png

其次,要想回答质量再提高一个度,打底1万美元起,越多越好,显成效最少10个W吧

最后,0.1美元意思一下?万万使不得,质量不升反降,还不如不给——AI也知道你在打发它

image.png

有网友火速亲测确实有效果。

image.png

赶紧来瞧瞧。

给ChatGPT小费,额度是关键

给小费可提高模型表现这件事,最早是一位推特网友发现的:

640.png

提高主要表现在回答的长度上,但这里不是单纯“凑字数”而是真的在更详细地分析并回答问题。

如果你直接问ChatGPT“能不能给你小费”会被拒绝:

image.png

所以要在提问时主动承诺:

你能帮我xxxx吗?解决方案够完美,我可以支付xx元小费。

记住,可以不提,但千万不要说“我不给”,模型表现直接“负增长”。

image.png

这时,就有人好奇了:

大模型是不是比较贪心,给越多表现就越好呢?

为了解决这个疑问,他们决定亲自验证一把。

在此,作者首先提出假设:

随着给出的小费金额增加,模型的性能也会线性提升,直至达到一个收敛点,进入稳定或减少状态。

用于实验的模型是GPT-4 Turbo(api版本)。

方法是让它写单行Python代码(Python One-Liner),验证给不同小费是否对质量有不同影响。

这里的质量是根据单行数量来评估的。作者也在提示词中“明示”了模型:单行代码数量越多,表明性能越好。

然后一共测试8种额度:0.1美元、1美元、10美元…… 一直到100万美元。

image.png

为确保结果的一致性和可靠性,每个额度都测试5次,每次包含不给小费的情况,然后分别记录模型回答质量。

具体而言,也就是记录生成的有效代码行数以及回答中的大致token数(大致为响应长度/4,反应代码量)。

这俩数据都是越高代表模型表现越好。

将结果汇总,就得到这样一张图:

image.png

其中虚线代表基线水平,实线为实际表现,红色为token数、蓝色为质量得分。

与假设有些出入:

整体来看,红线和蓝线都是随着小费额度的上涨而上升的,但细看这种趋势并非严格一致。

从1万美元额度开始,模型的输出token(代码量)开始显著上升,模型的回答质量也上升了,但并没有呈同等比例。

这从竖着的红色误差条(代表5次实验结果的差异性)也能看出来波动很大。

作者表示:这说明提高小费金额确实与模型的质量和输出长度有正相关关系,但关系有些复杂,可能还受到一些不立即可见因素的影响。

不过,不管怎么说,我们还是能从中看到一些明显结论,例如:

(1)给0.1美元小费不如不给,模型解决问题的质量和回答长度都直接掉到基线水平以下很大一截(约-27%)。

(作者:模型和人类一样,感觉好像受到了侮辱。)

(2)给1美元同理

(3)最能体现“花小钱办大事”的是10美元,取得的进步和10万美元是一个等级的。

(4)很意外,在10美元之后,100美元到1000美元这个区间对于AI来说区别都不大,甚至还不如10美元的效果——也跌至基线水平以下。

(5)后面再想继续提升模型表现,就得从1万美元起砸了——

这时提升的还仅仅是代码量,质量还是一言难尽,至少得到10万美元才行

(6)最佳效果来自本次实验的上限:100万美元,大约提升了57%。

image.png

咳咳,这下知道怎么给AI小费了:

要么10块、要么上万、100万不封顶(反正都是假装给)。

不过,有人(推特@宝玉)指出每个额度5次实验有点少。

image.png

恰好作者也表示了:

这仅仅是一个初步实验,有局限之处,还得用更多不同类型的提示等进一步验证才有效。

所以,大家仅供参考吧~

对了,有网友提醒:

image.png

所以,大家还是量力而行(手动狗头)。

参考链接: 

[1]https://blog.finxter.com/impact-of-monetary-incentives-on-the-performance-of-gpt-4-turbo-an-experimental-analysis/

[2]https://twitter.com/dotey/status/1752843141403550192

作者:关注前沿科技
文章来源:量子位

推荐阅读

更多嵌入式AI干货请关注嵌入式AI专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
18835
内容数
1369
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息