Khorina · 2024年02月07日 · 黑龙江

【系统启动】ARM Trusted Firmware分析——启动、PSCI、OP-TEE接口(上)

前言

最近在做一个项目的安全启动,但是对于这个其中的TEEOS步骤跳转这里,不怎么熟悉,于是找到了前辈的这篇文章,很详细,于是这里转载记录学习一下,原文链接放在文首,感谢前辈。(流程很详细,原文阅读还带代码跳转功能,学习的榜样,一篇好的博客,确实是要花心思的,内容和排版。这个内容其实能让学习者对于启动的主干有了一个顺畅的了解,但是在这些过程中,做了很多。有很多的东西都可以扩展展开。比如中断gic的初始化,后续希望能综合起来,从主干散开。)

下图划分成不同EL,分别描述BL1、BL2、BL31、BL32、BL33启动流程,以及PSCI、SP处理流程。

image.png

1. 冷启动(Cold boot)流程及阶段划分

ATF冷启动实现分为5个步骤:

  • BL1 - AP Trusted ROM,一般为BootRom。
  • BL2 - Trusted Boot Firmware,一般为Trusted Bootloader。
  • BL31 - EL3 Runtime Firmware,一般为SML,管理SMC执行处理和中断,运行在secure monitor中。
  • BL32 - Secure-EL1 Payload,一般为TEE OS Image。
  • BL33 - Non-Trusted Firmware,一般为uboot、linux kernel。

ATF输出BL1、BL2、BL31,提供BL32和BL33接口。

启动流程如下:

image.png

1.1 BL1

BL1位于ROM中,在EL3下从reset vector处开始运行。

BL1做的工作主要有:

  • 决定启动路径:冷启动还是热启动。
  • 架构初始化:异常向量、CPU复位处理函数配置、控制寄存器设置(SCRLR_EL3/SCR_EL3/CPTR_EL3/DAIF)
  • 平台初始化:使能Trusted Watchdog、初始化控制台、配置硬件一致性互联、配置MMU、初始化相关存储设备。
  • 固件更新处理
  • BL2镜像加载和执行:
  • BL1输出“Booting Trusted Firmware"。
  • BL1加载BL2到SRAM;如果SRAM不够或者BL2镜像错误,输出“Failed to load BL2 firmware.”。
  • BL1切换到Secure EL1并将执行权交给BL2.

1.2 BL2

BL2位于SRAM中,运行在Secure EL1主要工作有:

  • 架构初始化:EL1/EL0使能浮点单元和ASMID。
  • 平台初始化:控制台初始化、相关存储设备初始化、MMU、相关设备安全配置、
  • SCP_BL2:系统控制核镜像加载,单独核处理系统功耗、时钟、复位等控制。
  • 加载BL31镜像:BL2将控制权交给BL1;BL1关闭MMU并关cache;BL1将控制权交给BL31。
  • 加载BL32镜像:BL32运行在安全世界,BL2依赖BL31将控制权交给BL32。SPSR通过Secure-EL1 Payload Dispatcher进行初始化。
  • 加载BL33镜像:BL2依赖BL31将控制权交给BL33。

1.3 BL31

BL31位于SRAM中,EL3模式。除了做架构初始化和平台初始化外,还做了如下工作:

  • PSCI服务初始化,后续提供CPU功耗管理操作。
  • BL32镜像运行初始化,处于Secure EL1模式。
  • 初始化非安全EL2或EL1,跳转到BL33执行。
  • 负责安全非安全世界切换。
  • 进行安全服务请求的分发。

2 BL1

BL1镜像的异常向量表初始化了两个:一个是入口bl1_entrypoint,EL1镜像正常执行流程;另一个是SMC调用接口,EL2执行结束会通过SMC返回执行BL31。

vector_base bl1_vector_table
    b    bl1_entrypoint
    b    report_exception    /* Undef */
    b    bl1_aarch32_smc_handler    /* SMC call */
    b    report_exception    /* Prefetch abort */
    b    report_exception    /* Data abort */
    b    report_exception    /* Reserved */
    b    report_exception    /* IRQ */
    b    report_exception    /* FIQ */

func bl1_aarch32_smc_handler
    /* ------------------------------------------------
     * SMC in BL1 is handled assuming that the MMU is
     * turned off by BL2.
     * ------------------------------------------------
     */

    /* ----------------------------------------------
     * Only RUN_IMAGE SMC is supported.
     * ----------------------------------------------
     */
    mov    r8, #BL1_SMC_RUN_IMAGE--------------------------仅支持BL1_SMC_RUN_IMAGE SMC调用;其他调用触发report_exception。
    cmp    r8, r0
    blne    report_exception

    /* ------------------------------------------------
     * Make sure only Secure world reaches here.
     * ------------------------------------------------
     */
    ldcopr  r8, SCR
    tst    r8, #SCR_NS_BIT---------------------------------如果处于非安全状态,则触发report_exception。
    blne    report_exception

    /* ---------------------------------------------------------------------
     * Pass control to next secure image.
     * Here it expects r1 to contain the address of a entry_point_info_t
     * structure describing the BL entrypoint.
     * ---------------------------------------------------------------------
     */
    mov    r8, r1------------------------------------------第一个参数r0是功能id,即BL1_SMC_RUN_IMAGE_SMC。第二个参数是entry_point_info_t变量。
    mov    r0, r1
    bl    bl1_print_next_bl_ep_info

#if SPIN_ON_BL1_EXIT
    bl    print_debug_loop_message
debug_loop:
    b    debug_loop
#endif

    mov    r0, r8
    bl    bl1_plat_prepare_exit

    stcopr    r0, TLBIALL
    dsb    sy
    isb

    /*
     * Extract PC and SPSR based on struct `entry_point_info_t`
     * and load it in LR and SPSR registers respectively.
     */
    ldr    lr, [r8, #ENTRY_POINT_INFO_PC_OFFSET]
    ldr    r1, [r8, #(ENTRY_POINT_INFO_PC_OFFSET + 4)]
    msr    spsr, r1

    add    r8, r8, #ENTRY_POINT_INFO_ARGS_OFFSET
    ldm    r8, {r0, r1, r2, r3}----------------------------执行跳转到BL31。
    eret
endfunc bl1_aarch32_smc_handler

bl1_entrypoint()进行EL3执行环境初始化,设定向量表,加载bl2镜像并跳转到BL2执行。

func bl1_entrypoint
    /* ---------------------------------------------------------------------
     * If the reset address is programmable then bl1_entrypoint() is
     * executed only on the cold boot path. Therefore, we can skip the warm
     * boot mailbox mechanism.
     * ---------------------------------------------------------------------
     */
    el3_entrypoint_common                    \
        _set_endian=1                    \----------------------是否设定大小端。
        _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS    \-----是否检查当前属于冷启动还是热启动。
        _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU    \---------确定当前CPU是主CPU还是从CPU。
        _init_memory=1                    \---------------------是否初始化memory。
        _init_c_runtime=1                \----------------------是否初始化C语言执行环境。
        _exception_vectors=bl1_exceptions-----------------------异常向量表。

    /* ---------------------------------------------
     * Architectural init. can be generic e.g.
     * enabling stack alignment and platform spec-
     * ific e.g. MMU & page table setup as per the
     * platform memory map. Perform the latter here
     * and the former in bl1_main.
     * ---------------------------------------------
     */
    bl    bl1_early_platform_setup-------------------初始化memory、page table,所需外围设备初始化等。
    bl    bl1_plat_arch_setup

    /* --------------------------------------------------
     * Initialize platform and jump to our c-entry point
     * for this type of reset.
     * --------------------------------------------------
     */
    bl    bl1_main--------------------------------------------进行必要初始化,加载BL2镜像然后为退出EL3进入S.EL1做好准备。    /* --------------------------------------------------
     * Do the transition to next boot image.
     * --------------------------------------------------
     */
    b    el3_exit
endfunc bl1_entrypoint

el3_entrypoint_common()主要完成进入EL3基本设置和向量表注册。

.macro el3_entrypoint_common                    \
        _set_endian, _warm_boot_mailbox, _secondary_cold_boot,    \
        _init_memory, _init_c_runtime, _exception_vectors

    .if \_set_endian-------------------------------------------------------在进行内存读写之前,设置好系统的大小端。
        /* -------------------------------------------------------------
         * Set the CPU endianness before doing anything that might
         * involve memory reads or writes.
         * -------------------------------------------------------------
         */
        mrs    x0, sctlr_el3
        bic    x0, x0, #SCTLR_EE_BIT
        msr    sctlr_el3, x0
        isb
    .endif /* _set_endian */

    .if \_warm_boot_mailbox------------------------------------------------根据当前平台的entrypoint判断是冷启动还是热启动。
        /* -------------------------------------------------------------
         * This code will be executed for both warm and cold resets.
         * Now is the time to distinguish between the two.
         * Query the platform entrypoint address and if it is not zero
         * then it means it is a warm boot so jump to this address.
         * -------------------------------------------------------------
         */
        bl    plat_get_my_entrypoint
        cbz    x0, do_cold_boot--------------------------------------------如果为0说明是冷启动,执行do_cold_boot();非0则跳转到entrypoint执行。
        br    x0

    do_cold_boot:
    .endif /* _warm_boot_mailbox */

    /* ---------------------------------------------------------------------
     * It is a cold boot.
     * Perform any processor specific actions upon reset e.g. cache, TLB
     * invalidations etc.
     * ---------------------------------------------------------------------
     */
    bl    reset_handler---------------------------------------------------执行reset_handler()。

    el3_arch_init_common \_exception_vectors------------------------------初始化异常向量。

    .if \_secondary_cold_boot---------------------------------------------判断当前CPU是主CPU还是从CPU。
        /* -------------------------------------------------------------
         * Check if this is a primary or secondary CPU cold boot.
         * The primary CPU will set up the platform while the
         * secondaries are placed in a platform-specific state until the
         * primary CPU performs the necessary actions to bring them out
         * of that state and allows entry into the OS.
         * -------------------------------------------------------------
         */
        bl    plat_is_my_cpu_primary
        cbnz    w0, do_primary_cold_boot

        /* This is a cold boot on a secondary CPU */
        bl    plat_secondary_cold_boot_setup
        /* plat_secondary_cold_boot_setup() is not supposed to return */
        bl    el3_panic

    do_primary_cold_boot:
    .endif /* _secondary_cold_boot */

    /* ---------------------------------------------------------------------
     * Initialize memory now. Secondary CPU initialization won't get to this
     * point.
     * ---------------------------------------------------------------------
     */

    .if \_init_memory----------------------------------------------------初始化内存。
        bl    platform_mem_init
    .endif /* _init_memory */

    /* ---------------------------------------------------------------------
     * Init C runtime environment:
     *   - Zero-initialise the NOBITS sections. There are 2 of them:
     *       - the .bss section;
     *       - the coherent memory section (if any).
     *   - Relocate the data section from ROM to RAM, if required.
     * ---------------------------------------------------------------------
     */
    .if \_init_c_runtime-------------------------------------------------初始化C执行环境。
#if IMAGE_BL31
        /* -------------------------------------------------------------
         * Invalidate the RW memory used by the BL31 image. This
         * includes the data and NOBITS sections. This is done to
         * safeguard against possible corruption of this memory by
         * dirty cache lines in a system cache as a result of use by
         * an earlier boot loader stage.
         * -------------------------------------------------------------
         */
        adr    x0, __RW_START__
        adr    x1, __RW_END__
        sub    x1, x1, x0
        bl    inv_dcache_range
#endif /* IMAGE_BL31 */

        ldr    x0, =__BSS_START__
        ldr    x1, =__BSS_SIZE__
        bl    zeromem16

#if USE_COHERENT_MEM
        ldr    x0, =__COHERENT_RAM_START__
        ldr    x1, =__COHERENT_RAM_UNALIGNED_SIZE__
        bl    zeromem16
#endif

#if IMAGE_BL1
        ldr    x0, =__DATA_RAM_START__
        ldr    x1, =__DATA_ROM_START__
        ldr    x2, =__DATA_SIZE__
        bl    memcpy16
#endif
    .endif /* _init_c_runtime */

    /* ---------------------------------------------------------------------
     * Use SP_EL0 for the C runtime stack.
     * ---------------------------------------------------------------------
     */
    msr    spsel, #0

    /* ---------------------------------------------------------------------
     * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
     * the MMU is enabled. There is no risk of reading stale stack memory
     * after enabling the MMU as only the primary CPU is running at the
     * moment.
     * ---------------------------------------------------------------------
     */
    bl    plat_set_my_stack
    .endm

bl1_main()完成架构和平台特有初始化操作,然后加载BL2镜像并跳转执行。

/*******************************************************************************
 * Function to perform late architectural and platform specific initialization.
 * It also queries the platform to load and run next BL image. Only called
 * by the primary cpu after a cold boot.
 ******************************************************************************/
void bl1_main(void)
{
    unsigned int image_id;

    /* Announce our arrival */
    NOTICE(FIRMWARE_WELCOME_STR);
    NOTICE("BL1: %s\n", version_string);
    NOTICE("BL1: %s\n", build_message);

    INFO("BL1: RAM %p - %p\n", (void *)BL1_RAM_BASE,
                    (void *)BL1_RAM_LIMIT);
...
    /* Perform remaining generic architectural setup from EL3 */
    bl1_arch_setup();

#if TRUSTED_BOARD_BOOT
    /* Initialize authentication module */
    auth_mod_init();----------------------------------------------初始化安全模块和镜像解析模块。
#endif /* TRUSTED_BOARD_BOOT */

    /* Perform platform setup in BL1. */
    bl1_platform_setup();

    /* Get the image id of next image to load and run. */
    image_id = bl1_plat_get_next_image_id();----------------------获取下一级启动镜像的ID。

    /*
     * We currently interpret any image id other than
     * BL2_IMAGE_ID as the start of firmware update.
     */
    if (image_id == BL2_IMAGE_ID)
        bl1_load_bl2();------------------------------------------将BL2镜像加载到TSRAM中。
    else
        NOTICE("BL1-FWU: *******FWU Process Started*******\n");

    bl1_prepare_next_image(image_id);----------------------------获取image_id对应镜像描述信息,并为进入下一级镜像执行准备好上下文。
}

/*******************************************************************************
 * This function locates and loads the BL2 raw binary image in the trusted SRAM.
 * Called by the primary cpu after a cold boot.
 * TODO: Add support for alternative image load mechanism e.g using virtio/elf
 * loader etc.
 ******************************************************************************/
void bl1_load_bl2(void)
{
    image_desc_t *image_desc;
    image_info_t *image_info;
    entry_point_info_t *ep_info;
    meminfo_t *bl1_tzram_layout;
    meminfo_t *bl2_tzram_layout;
    int err;

    /* Get the image descriptor */
    image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID);
    assert(image_desc);

    /* Get the image info */
    image_info = &image_desc->image_info;

    /* Get the entry point info */
    ep_info = &image_desc->ep_info;

    /* Find out how much free trusted ram remains after BL1 load */
    bl1_tzram_layout = bl1_plat_sec_mem_layout();

    INFO("BL1: Loading BL2\n");

#if LOAD_IMAGE_V2
    err = load_auth_image(BL2_IMAGE_ID, image_info);
#else
    /* Load the BL2 image */
    err = load_auth_image(bl1_tzram_layout,
             BL2_IMAGE_ID,
             image_info->image_base,
             image_info,
             ep_info);

#endif /* LOAD_IMAGE_V2 */

    if (err) {
        ERROR("Failed to load BL2 firmware.\n");
        plat_error_handler(err);
    }

    /*
     * Create a new layout of memory for BL2 as seen by BL1 i.e.
     * tell it the amount of total and free memory available.
     * This layout is created at the first free address visible
     * to BL2. BL2 will read the memory layout before using its
     * memory for other purposes.
     */
#if LOAD_IMAGE_V2
    bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->total_base;
#else
    bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->free_base;
#endif /* LOAD_IMAGE_V2 */

    bl1_init_bl2_mem_layout(bl1_tzram_layout, bl2_tzram_layout);

    ep_info->args.arg1 = (uintptr_t)bl2_tzram_layout;
    NOTICE("BL1: Booting BL2\n");
    VERBOSE("BL1: BL2 memory layout address = %p\n",
        (void *) bl2_tzram_layout);
}

/*******************************************************************************
 * This function prepares the context for Secure/Normal world images.
 * Normal world images are transitioned to EL2(if supported) else EL1.
 ******************************************************************************/
void bl1_prepare_next_image(unsigned int image_id)
{
    unsigned int security_state;
    image_desc_t *image_desc;
    entry_point_info_t *next_bl_ep;

#if CTX_INCLUDE_AARCH32_REGS
    /*
     * Ensure that the build flag to save AArch32 system registers in CPU
     * context is not set for AArch64-only platforms.
     */
    if (((read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL1_SHIFT)
            & ID_AA64PFR0_ELX_MASK) == 0x1) {
        ERROR("EL1 supports AArch64-only. Please set build flag "
                "CTX_INCLUDE_AARCH32_REGS = 0");
        panic();
    }
#endif

    /* Get the image descriptor. */
    image_desc = bl1_plat_get_image_desc(image_id);---------------获取镜像描述信息,包括入口地址、名字等等。
    assert(image_desc);

    /* Get the entry point info. */
    next_bl_ep = &image_desc->ep_info;

    /* Get the image security state. */
    security_state = GET_SECURITY_STATE(next_bl_ep->h.attr);------镜像是属于安全还是非安全镜像。

    /* Setup the Secure/Non-Secure context if not done already. */
    if (!cm_get_context(security_state))
        cm_set_context(&bl1_cpu_context[security_state], security_state);

    /* Prepare the SPSR for the next BL image. */
    if (security_state == SECURE) {-------------------------------设置镜像运行的SPSR数据。
        next_bl_ep->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
                   DISABLE_ALL_EXCEPTIONS);
    } else {
        /* Use EL2 if supported else use EL1. */
        if (read_id_aa64pfr0_el1() &
            (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
            next_bl_ep->spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
                DISABLE_ALL_EXCEPTIONS);
        } else {
            next_bl_ep->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
               DISABLE_ALL_EXCEPTIONS);
        }
    }

    /* Allow platform to make change */
    bl1_plat_set_ep_info(image_id, next_bl_ep);

    /* Prepare the context for the next BL image. */
    cm_init_my_context(next_bl_ep);
    cm_prepare_el3_exit(security_state);--------------------------为运行下一个镜像,EL3做好准备。

    /* Indicate that image is in execution state. */
    image_desc->state = IMAGE_STATE_EXECUTED;

    print_entry_point_info(next_bl_ep);---------------------------打印下一级进行相关信息。下面即将el3_exit,退出EL3进入新的进项运行。
}

3 BL2

BL2的主要工作就是加载BL3x系列镜像,然后通过SMC进入BL1进而跳转到BL31运行。

bl2_entrypoint()是BL2的入口,前半部分主要进行一系列初始化工作,然后通过bl2_main()加载BL3x镜像到RAM中,最后通过SMC调用执行BL1中指定的smc handler将CPU执行权交给BL31。

func bl2_entrypoint
    /*---------------------------------------------
     * Save from x1 the extents of the tzram
     * available to BL2 for future use.
     * x0 is not currently used.
     * ---------------------------------------------
     */
    mov    x20, x1

    /* ---------------------------------------------
     * Set the exception vector to something sane.
     * ---------------------------------------------
     */
    adr    x0, early_exceptions
    msr    vbar_el1, x0-------------------------------------设定异常向量。
    isb

    /* ---------------------------------------------
     * Enable the SError interrupt now that the
     * exception vectors have been setup.
     * ---------------------------------------------
     */
    msr    daifclr, #DAIF_ABT_BIT

    /* ---------------------------------------------
     * Enable the instruction cache, stack pointer
     * and data access alignment checks
     * ---------------------------------------------
     */
    mov    x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
    mrs    x0, sctlr_el1
    orr    x0, x0, x1
    msr    sctlr_el1, x0----------------------------------配置cache、内存对齐等属性。
    isb

    /* ---------------------------------------------
     * Invalidate the RW memory used by the BL2
     * image. This includes the data and NOBITS
     * sections. This is done to safeguard against
     * possible corruption of this memory by dirty
     * cache lines in a system cache as a result of
     * use by an earlier boot loader stage.
     * ---------------------------------------------
     */
    adr    x0, __RW_START__
    adr    x1, __RW_END__
    sub    x1, x1, x0
    bl    inv_dcache_range-------------------------------将BL2的__RW_START__和__RW_END__之间的内存刷回DDR中。

    /* ---------------------------------------------
     * Zero out NOBITS sections. There are 2 of them:
     *   - the .bss section;
     *   - the coherent memory section.
     * ---------------------------------------------
     */
    ldr    x0, =__BSS_START__
    ldr    x1, =__BSS_SIZE__
    bl    zeromem16--------------------------------------初始化__BSS_START__开始,大小为__BSS_SIZE__内存为0。

#if USE_COHERENT_MEM
    ldr    x0, =__COHERENT_RAM_START__
    ldr    x1, =__COHERENT_RAM_UNALIGNED_SIZE__
    bl    zeromem16
#endif

    /* --------------------------------------------
     * Allocate a stack whose memory will be marked
     * as Normal-IS-WBWA when the MMU is enabled.
     * There is no risk of reading stale stack
     * memory after enabling the MMU as only the
     * primary cpu is running at the moment.
     * --------------------------------------------
     */
    bl    plat_set_my_stack

    /* ---------------------------------------------
     * Perform early platform setup & platform
     * specific early arch. setup e.g. mmu setup
     * ---------------------------------------------
     */
    mov    x0, x20
    bl    bl2_early_platform_setup
    bl    bl2_plat_arch_setup

    /* ---------------------------------------------
     * Jump to main function.
     * ---------------------------------------------
     */
    bl    bl2_main------------------------------------跳转到BL2主函数执行,该函数加载BL3x镜像,并通过SMC调用BL1指定SMC函数将CPU执行权交给BL31。

    /* ---------------------------------------------
     * Should never reach this point.
     * ---------------------------------------------
     */
    no_ret    plat_panic_handler

endfunc bl2_entrypoint

bl2_main()主要加载BL3x镜像并验证,然后获取下一个要运行的镜像信息,通过SMC调用让BL1去启动。

/*******************************************************************************
 * The only thing to do in BL2 is to load further images and pass control to
 * next BL. The memory occupied by BL2 will be reclaimed by BL3x stages. BL2
 * runs entirely in S-EL1.
 ******************************************************************************/
void bl2_main(void)
{
    entry_point_info_t *next_bl_ep_info;

    NOTICE("BL2: %s\n", version_string);
    NOTICE("BL2: %s\n", build_message);

    /* Perform remaining generic architectural setup in S-EL1 */
    bl2_arch_setup();

#if TRUSTED_BOARD_BOOT
    /* Initialize authentication module */
    auth_mod_init();
#endif /* TRUSTED_BOARD_BOOT */

    /* Load the subsequent bootloader images. */
    next_bl_ep_info = bl2_load_images();

#ifdef AARCH32
    /*
     * For AArch32 state BL1 and BL2 share the MMU setup.
     * Given that BL2 does not map BL1 regions, MMU needs
     * to be disabled in order to go back to BL1.
     */
    disable_mmu_icache_secure();
#endif /* AARCH32 */

    /*
     * Run next BL image via an SMC to BL1. Information on how to pass
     * control to the BL32 (if present) and BL33 software images will
     * be passed to next BL image as an argument.
     */
    smc(BL1_SMC_RUN_IMAGE, (unsigned long)next_bl_ep_info, 0, 0, 0, 0, 0, 0);----------发起SMC异常启动BL31镜像,交给BL1 bl1_aarch32_smc_handler处理。
}

bl2_mem_params_descs定义了BL2需要加载镜像的信息,通过REGISTER_BL_IMAGE_DESCS()将其和bl_mem_params_desc_ptr关联,并获取需要加载镜像数目bl_mem_params_desc_num。

#define REGISTER_BL_IMAGE_DESCS(_img_desc)                \
    bl_mem_params_node_t *bl_mem_params_desc_ptr = &_img_desc[0];    \
    unsigned int bl_mem_params_desc_num = ARRAY_SIZE(_img_desc);

static bl_mem_params_node_t bl2_mem_params_descs[] = {
...
#ifdef EL3_PAYLOAD_BASE
...
#else /* EL3_PAYLOAD_BASE */

    /* Fill BL31 related information */
    {
        .image_id = BL31_IMAGE_ID,

        SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
            VERSION_2, entry_point_info_t,
            SECURE | EXECUTABLE | EP_FIRST_EXE),
        .ep_info.pc = BL31_BASE,
        .ep_info.spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
            DISABLE_ALL_EXCEPTIONS),
#if DEBUG
        .ep_info.args.arg1 = ARM_BL31_PLAT_PARAM_VAL,
#endif

        SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
            VERSION_2, image_info_t, IMAGE_ATTRIB_PLAT_SETUP),
        .image_info.image_base = BL31_BASE,
        .image_info.image_max_size = BL31_LIMIT - BL31_BASE,

# ifdef BL32_BASE
        .next_handoff_image_id = BL32_IMAGE_ID,
# else
        .next_handoff_image_id = BL33_IMAGE_ID,
# endif
    },

# ifdef BL32_BASE
    /* Fill BL32 related information */
    {
        .image_id = BL32_IMAGE_ID,

        SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
            VERSION_2, entry_point_info_t, SECURE | EXECUTABLE),
        .ep_info.pc = BL32_BASE,

        SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
            VERSION_2, image_info_t, 0),
        .image_info.image_base = BL32_BASE,
        .image_info.image_max_size = BL32_LIMIT - BL32_BASE,

        .next_handoff_image_id = BL33_IMAGE_ID,
    },
# endif /* BL32_BASE */

    /* Fill BL33 related information */
    {
        .image_id = BL33_IMAGE_ID,
        SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
            VERSION_2, entry_point_info_t, NON_SECURE | EXECUTABLE),
# ifdef PRELOADED_BL33_BASE
        .ep_info.pc = PRELOADED_BL33_BASE,

        SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
            VERSION_2, image_info_t, IMAGE_ATTRIB_SKIP_LOADING),
# else
        .ep_info.pc = PLAT_ARM_NS_IMAGE_OFFSET,

        SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
            VERSION_2, image_info_t, 0),
        .image_info.image_base = PLAT_ARM_NS_IMAGE_OFFSET,
        .image_info.image_max_size = ARM_DRAM1_SIZE,
# endif /* PRELOADED_BL33_BASE */

        .next_handoff_image_id = INVALID_IMAGE_ID,
    }
#endif /* EL3_PAYLOAD_BASE */
};

REGISTER_BL_IMAGE_DESCS(bl2_mem_params_descs)


/*******************************************************************************
 * This function loads SCP_BL2/BL3x images and returns the ep_info for
 * the next executable image.
 ******************************************************************************/
entry_point_info_t *bl2_load_images(void)
{
    bl_params_t *bl2_to_next_bl_params;
    bl_load_info_t *bl2_load_info;
    const bl_load_info_node_t *bl2_node_info;
    int plat_setup_done = 0;
    int err;

    /*
     * Get information about the images to load.
     */
    bl2_load_info = plat_get_bl_image_load_info();-----------------获取待加载镜像BL3x或SCP_EL2信息,然后遍历处理。
    assert(bl2_load_info);
    assert(bl2_load_info->head);
    assert(bl2_load_info->h.type == PARAM_BL_LOAD_INFO);
    assert(bl2_load_info->h.version >= VERSION_2);
    bl2_node_info = bl2_load_info->head;---------------------------bl2_node_info指向镜像第一个对象。

    while (bl2_node_info) {----------------------------------------循环遍历bl2_mem_params_descs成员并加载处理。
        /*
         * Perform platform setup before loading the image,
         * if indicated in the image attributes AND if NOT
         * already done before.
         */
        if (bl2_node_info->image_info->h.attr & IMAGE_ATTRIB_PLAT_SETUP) {----确定加载前是否需要进行特定平台初始化。
            if (plat_setup_done) {
                WARN("BL2: Platform setup already done!!\n");
            } else {
                INFO("BL2: Doing platform setup\n");
                bl2_platform_setup();
                plat_setup_done = 1;
            }
        }

        if (!(bl2_node_info->image_info->h.attr & IMAGE_ATTRIB_SKIP_LOADING)) {----确定是否需要跳过加载到RAM步骤;如否,则进行验证并加载。
            INFO("BL2: Loading image id %d\n", bl2_node_info->image_id);
            err = load_auth_image(bl2_node_info->image_id,
                bl2_node_info->image_info);----------------------------------------将镜像加载到RAM,然后进行验证。
            if (err) {
                ERROR("BL2: Failed to load image (%i)\n", err);
                plat_error_handler(err);
            }
        } else {
            INFO("BL2: Skip loading image id %d\n", bl2_node_info->image_id);
        }

        /* Allow platform to handle image information. */
        err = bl2_plat_handle_post_image_load(bl2_node_info->image_id);-------------修改特定镜像的加载信息。
        if (err) {
            ERROR("BL2: Failure in post image load handling (%i)\n", err);
            plat_error_handler(err);
        }

        /* Go to next image */
        bl2_node_info = bl2_node_info->next_load_info;------------------------------循环加载下一个镜像。
    }

    /*
     * Get information to pass to the next image.
     */
    bl2_to_next_bl_params = plat_get_next_bl_params();------------------------------获取下一个执行镜像入口信息,属性为EXECUTABLE和EP_FIRST_EXE,也即BL31。
    assert(bl2_to_next_bl_params);
    assert(bl2_to_next_bl_params->head);
    assert(bl2_to_next_bl_params->h.type == PARAM_BL_PARAMS);
    assert(bl2_to_next_bl_params->h.version >= VERSION_2);

    /* Flush the parameters to be passed to next image */
    plat_flush_next_bl_params();----------------------------------------------------将bl_mem_params_desc_ptr数据刷到DDR中,后面即将通过SMC跳转到BL1启动BL31,保持数据一致性。

    return bl2_to_next_bl_params->head->ep_info;
}

4. BL31(EL3 Firmware)

参考文档:《SMC CALLING CONVENTION System Software on ARM® Platforms》

SMCCC定义了每个SMC请求功能的ID以及入参和返回值。

下面逐一介绍运行在EL3固件的运行服务框架的注册、初始化和使用。

SMCCC定义了每个运行服务框架的SMC功能ID、OEN(Owning Entity Numbers)、Fast和Standard调用、SMC32和SMC64调用转换。

需要优先实现的功能有:

  • Standard服务调用:
  • Secure-EL1 Payload Dispatcher service:如果存在TOS或者S.EL1 Payload,则需要EL3 Secure Monitor负责切换NS.EL1/2和S.EL1。Secure Monitor和S.EL1 Payload之间接口被称为SPD(S.EL1 Payload Dispatcher)。ATF还提供了TSP(Test S.EL1 Payload)和TSPD。
  • CPU特有服务:提供CPU特有的的功能服务。

4.1 运行服务注册

DECLARE_RT_SVC()用于注册一个运行服务,指定服务名称、OEN范围、服务类型(SMC_TYPE_FAST/SMC_TYPE_STD)、初始化和调用函数。

通过DECLARE_RT_SVC()注册的每个服务都会在ELF的rt_svc_descs段中存在,__RT_SVC_DESCS_START__和__RT_SVC_DESCS_END__是此段的起始结束地址,并可以通过地址范围计算服务数量RT_SVC_DECS_NUM。

/*
 * Convenience macro to declare a service descriptor
 */
#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch) \
    static const rt_svc_desc_t __svc_desc_ ## _name \
        __section("rt_svc_descs") __used = { \
            .start_oen = _start, \
            .end_oen = _end, \
            .call_type = _type, \
            .name = #_name, \
            .init = _setup, \
            .handle = _smch }

typedef struct rt_svc_desc {
    uint8_t start_oen;-------------------service内部启动oen
    uint8_t end_oen;---------------------service内部末尾oen
    uint8_t call_type;-------------------smc类型,是fast call还是standard call
    const char *name;--------------------service名称
    rt_svc_init_t init;------------------service初始化函数
    rt_svc_handle_t handle;--------------对应function id的调用函数
} rt_svc_desc_t;

SMC功能ID范围定义如下:

/*******************************************************************************
 * Owning entity number definitions inside the function id as per the SMC
 * calling convention
 ******************************************************************************/
#define OEN_ARM_START            0
#define OEN_ARM_END            0
#define OEN_CPU_START            1
#define OEN_CPU_END            1
#define OEN_SIP_START            2
#define OEN_SIP_END            2
#define OEN_OEM_START            3
#define OEN_OEM_END            3
#define OEN_STD_START            4    /* Standard Calls */
#define OEN_STD_END            4
#define OEN_TAP_START            48    /* Trusted Applications */
#define OEN_TAP_END            49
#define OEN_TOS_START            50    /* Trusted OS */
#define OEN_TOS_END            63
#define OEN_LIMIT            64

上面的定义根据如下规格:

image.png

MAX_RT_SVCS为128,是因为OEN有64个,SMC类型有Standard和Fast两种类型,所以一共有128种。rt_svc_descs_indices[]一共有128个。

4.2 ATF初始化

bl31_entrypoint()是冷启动的入口,只会被cpu0执行。

func bl31_entrypoint
#if !RESET_TO_BL31
    /* ---------------------------------------------------------------
     * Preceding bootloader has populated x0 with a pointer to a
     * 'bl31_params' structure & x1 with a pointer to platform
     * specific structure
     * ---------------------------------------------------------------
     */
#if HISILICON
    /* hisilicon use args from uboot,
     * load_fip.c has set value in address 8 and 16
     */
    mov    x0, 8
    mov    x1, 16
    ldr    x20, [x0]
    ldr    x21, [x1]
#else
    mov    x20, x0
    mov    x21, x1
#endif
    /* ---------------------------------------------------------------------
     * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
     * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
     * and primary/secondary CPU logic should not be executed in this case.
     *
     * Also, assume that the previous bootloader has already set up the CPU
     * endianness and has initialised the memory.
     * ---------------------------------------------------------------------
     */
    el3_entrypoint_common                    \
        _set_endian=0                    \
        _warm_boot_mailbox=0                \
        _secondary_cold_boot=0                \
        _init_memory=0                    \
        _init_c_runtime=1                \
        _exception_vectors=runtime_exceptions----------------------------runtime_exceptions是ATF的异常向量表。

    /* ---------------------------------------------------------------------
     * Relay the previous bootloader's arguments to the platform layer
     * ---------------------------------------------------------------------
     */
    mov    x0, x20
    mov    x1, x21
#else
    /* ---------------------------------------------------------------------
     * For RESET_TO_BL31 systems which have a programmable reset address,
     * bl31_entrypoint() is executed only on the cold boot path so we can
     * skip the warm boot mailbox mechanism.
     * ---------------------------------------------------------------------
     */
    el3_entrypoint_common                    \
        _set_endian=1                    \
        _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS    \
        _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU    \
        _init_memory=1                    \
        _init_c_runtime=1                \
        _exception_vectors=runtime_exceptions

    /* ---------------------------------------------------------------------
     * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
     * there's no argument to relay from a previous bootloader. Zero the
     * arguments passed to the platform layer to reflect that.
     * ---------------------------------------------------------------------
     */
    mov    x0, 0
    mov    x1, 0
#endif /* RESET_TO_BL31 */

    /* ---------------------------------------------
     * Perform platform specific early arch. setup
     * ---------------------------------------------
     */
    bl    bl31_early_platform_setup-------------------------------------初始化UART,以及获取BL32、BL33的entrypoint。
    bl    bl31_plat_arch_setup------------------------------------------MMU内存初始化。

    /* ---------------------------------------------
     * Jump to main function.
     * ---------------------------------------------
     */
    bl    bl31_main
    /* -------------------------------------------------------------
     * Clean the .data & .bss sections to main memory. This ensures
     * that any global data which was initialised by the primary CPU
     * is visible to secondary CPUs before they enable their data
     * caches and participate in coherency.
     * -------------------------------------------------------------
     */
    adr    x0, __DATA_START__
    adr    x1, __DATA_END__
    sub    x1, x1, x0
    bl    clean_dcache_range

    adr    x0, __BSS_START__
    adr    x1, __BSS_END__
    sub    x1, x1, x0
    bl    clean_dcache_range--------------------------------------------刷data和bss段到内存中。

    b    el3_exit
endfunc bl31_entrypoint

BL3异常向量表runtime_exceptions

el3_exit()退出当前ATF执行下一阶段的镜像。

 /* -----------------------------------------------------
     * This routine assumes that the SP_EL3 is pointing to
     * a valid context structure from where the gp regs and
     * other special registers can be retrieved.
     * -----------------------------------------------------
     */
func el3_exit
    /* -----------------------------------------------------
     * Save the current SP_EL0 i.e. the EL3 runtime stack
     * which will be used for handling the next SMC. Then
     * switch to SP_EL3
     * -----------------------------------------------------
     */
    mov    x17, sp
    msr    spsel, #1
    str    x17, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]

    /* -----------------------------------------------------
     * Restore SPSR_EL3, ELR_EL3 and SCR_EL3 prior to ERET
     * -----------------------------------------------------
     */
    ldr    x18, [sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]
    ldp    x16, x17, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
    msr    scr_el3, x18
    msr    spsr_el3, x16
    msr    elr_el3, x17

    /* Restore saved general purpose registers and return */
    b    restore_gp_registers_eret
endfunc el3_exit

bl31_main()是ATF主体,初始化好ATF服务、启动optee os,至此可以提供psci、TOS等服务。然后再为进入BL33做好准备工作。

/*******************************************************************************
 * BL31 is responsible for setting up the runtime services for the primary cpu
 * before passing control to the bootloader or an Operating System. This
 * function calls runtime_svc_init() which initializes all registered runtime
 * services. The run time services would setup enough context for the core to
 * swtich to the next exception level. When this function returns, the core will
 * switch to the programmed exception level via. an ERET.
 ******************************************************************************/
void bl31_main(void)
{
    NOTICE("BL31: %s\n", version_string);
    NOTICE("BL31: %s\n", build_message);

    /* Perform platform setup in BL31 */
    bl31_platform_setup();---------------------------------------------------初始化GIC、Timer、Power等工作。

    /* Initialise helper libraries */
    bl31_lib_init();---------------------------------------------------------初始化BL31中相关全局变量。

    /* Initialize the runtime services e.g. psci. */
    INFO("BL31: Initializing runtime services\n");
    runtime_svc_init();------------------------------------------------------初始化EL3 ATF中注册的服务,编译时放在rt_svc_decs特定段中。

    /*
     * All the cold boot actions on the primary cpu are done. We now need to
     * decide which is the next image (BL32 or BL33) and how to execute it.
     * If the SPD runtime service is present, it would want to pass control
     * to BL32 first in S-EL1. In that case, SPD would have registered a
     * function to intialize bl32 where it takes responsibility of entering
     * S-EL1 and returning control back to bl31_main. Once this is done we
     * can prepare entry into BL33 as normal.
     */

    /*
     * If SPD had registerd an init hook, invoke it.
     */
    if (bl32_init) {
        INFO("BL31: Initializing BL32\n");
        (*bl32_init)();------------------------------------------------------如果注册了TOS支持,调用对应的init函数初始化TOS。对于optee就是opteed_init()。
    }
    /*
     * We are ready to enter the next EL. Prepare entry into the image
     * corresponding to the desired security state after the next ERET.
     */
    bl31_prepare_next_image_entry();-----------------------------------------准备跳转到BL33,

    /*
     * Perform any platform specific runtime setup prior to cold boot exit
     * from BL31
     */
    bl31_plat_runtime_setup();-----------------------------------------------BL31退出前准备工作。
}

runtime_svc_init()作为BL31初始化一部分,初始化了运行在主CPU上的运行服务框架。这必须在TOS和普通世界软件启动之前执行,因为安全和非安全软件可能需要使用这部分内容。

runtime_svc_init()主要对注册的服务进行有限性验证,调用各自服务的初始化函数init(),以及将不同SMC OEN转换到注册服务ID。

在实际使用中,注册一个服务可能对应一系列SMC调用。

void runtime_svc_init(void)
{
    int rc = 0, index, start_idx, end_idx;

    /* Assert the number of descriptors detected are less than maximum indices */
    assert((RT_SVC_DESCS_END >= RT_SVC_DESCS_START) &&
            (RT_SVC_DECS_NUM < MAX_RT_SVCS));

    /* If no runtime services are implemented then simply bail out */
    if (RT_SVC_DECS_NUM == 0)-----------------------------------------------对注册到ATF的SMC服务数量进行检查。
        return;

    /* Initialise internal variables to invalid state */
    memset(rt_svc_descs_indices, -1, sizeof(rt_svc_descs_indices));

    rt_svc_descs = (rt_svc_desc_t *) RT_SVC_DESCS_START;
    for (index = 0; index < RT_SVC_DECS_NUM; index++) {----------------------遍历rt_svc_descs段,
        rt_svc_desc_t *service = &rt_svc_descs[index];

        rc = validate_rt_svc_desc(service);
        if (rc) {
            ERROR("Invalid runtime service descriptor %p\n",
                (void *) service);
            panic();
        }

        if (service->init) {
            rc = service->init();--------------------------------------------执行当前service的init函数。
            if (rc) {
                ERROR("Error initializing runtime service %s\n",
                        service->name);
                continue;
            }
        }

        start_idx = get_unique_oen(rt_svc_descs[index].start_oen,
                service->call_type);
        assert(start_idx < MAX_RT_SVCS);
        end_idx = get_unique_oen(rt_svc_descs[index].end_oen,
                service->call_type);
        assert(end_idx < MAX_RT_SVCS);
        for (; start_idx <= end_idx; start_idx++)----------------------------根据call_type和oen范围,确定rt_svc_descs_indices对应下标,达到SMC function id到注册service id的转换。
            rt_svc_descs_indices[start_idx] = index;
    }
}

4.3 处理SMC

当EL3 Firmware接收到一个SMC时,SMC功能ID通过W0传递到EL3 Firmware。这是根据寄存位宽和W0进行检查,如果两者不匹配则返回错误。

其中Bit[31]和bits[29:24]共7bit组成一个0~127范围数值,在rt_svc_descs_indices[]所对应具体的软件服务rt_svc_descs[]索引。

进而调用具体软件服务的handle()函数:

uintptr_t handle_runtime_svc(uint32_t smc_fid,
                 void *cookie,
                 void *handle,
                 unsigned int flags)
{
    u_register_t x1, x2, x3, x4;
    int index, idx;
    const rt_svc_desc_t *rt_svc_descs;

    assert(handle);
    idx = get_unique_oen_from_smc_fid(smc_fid);
    assert(idx >= 0 && idx < MAX_RT_SVCS);

    index = rt_svc_descs_indices[idx];---------------------将从x0寄存器中读取的Standard/Fast和OWN组合的idx,找到Runtime Service的index。
    if (index < 0 || index >= RT_SVC_DECS_NUM)
        SMC_RET1(handle, SMC_UNK);

    rt_svc_descs = (rt_svc_desc_t *) RT_SVC_DESCS_START;---Runtime Service起始地址。

    get_smc_params_from_ctx(handle, x1, x2, x3, x4);-------获取x1/x2/x3/x4寄存器。

    return rt_svc_descs[index].handle(smc_fid, x1, x2, x3, x4, cookie,
                        handle, flags);--------------------调用具体Runtime Service的handle()函数。
}
作者:ArnoldLu
文章来源:TrustZone

推荐阅读

更多物联网安全,PSA等技术干货请关注平台安全架构(PSA)专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入PSA技术交流群,请备注研究方向。
推荐阅读
关注数
4570
内容数
192
Arm发布的PSA旨在为物联网安全提供一套全面的安全指导方针,使从芯片制造商到设备开发商等价值链中的每位成员都能成功实现安全运行。
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息