vesperW · 4月28日

竟有如此精细化片内SRAM电源控制的MCU?

大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是从功耗测试角度了解i.MXRTxxx系列片内SRAM分区电源控制

我们知道配合 MCU 一起工作的存储器包含 ROM(Flash) 和 RAM 两类,前者主要放 RO 代码和数据,后者放 RW 数据。MCU 可以没有片内 ROM,但是一般都会包含片内 RAM,这个片内 RAM 功耗是 MCU 整体功耗的重要组成部分。

恩智浦 i.MXRT 四位数系列片内 RAM 主要由 FlexRAM 和 OCRAM 组成,痞子衡写过一篇文章 《FlexRAM模块详解》,里面介绍了 FlexRAM 的电源控制策略。虽然 FlexRAM 也是由多个 Bank 组成,但是其无法做到任意开关每个 Bank,其受既定的组合策略控制(跟随系统 Low Power 模式),而 OCRAM 则直接是整体开关。就这方面设计而言,i.MXRT 三位数系列片内 SRAM 电源控制则灵活得多,今天痞子衡就重点聊聊这个话题:

一、片内SRAM分区控制

恩智浦 i.MXRT 三位数系列目前主要是 RT500 和 RT600 两大型号,前者包含 5MB 片内 SRAM,后者包含 4.5MB 片内 SRAM。因为片内 RAM 够大,所以为其设计的电源控制策略就更精细。

下图是 RT500 上 AXI-to-RAM 架构图,从图里我们知道 5MB SRAM 一共被分成了 32 块(注意不是等分,有 32KB/64KB/128KB/256KB 四种不同大小)。

- RT500 一共 32 个 SRAM 分区(SRAM0-31):
- RT600 一共 30 个 SRAM 分区(SRAM0-29):
- 不同大小的 SRAM 分区:
  SRAM0-7   :32KB
  SRAM8-11  :64KB
  SRAM12-15 :128KB
  SRAM16-31 :256KB

image.png

因为 RT500/600 都是基于 ARM Cortex-M33,所以片内 SRAM 在系统地址映射里有 Secure 和 Non-Secure 两个不同起始地址,再加上可以通过 Code 和 Data 两个不同总线去访问,所以应用里可以通过如下 4 个不同起始地址来访问到这同一块物理 SRAM。

image.png

这些 SRAM 分区除了大小不同之外,有一些还被赋予了特殊用途。比如 SRAM2,3 被 ROM API 征用了,如果应用里需要调用 ROM API,需要释放 SRAM2,3 使用权。SRAM0 则更特殊,它是唯一的一个软复位后依旧能保持内容的分区(其它分区复位后默认是Power down状态,不过上电 BootROM 执行时会将全部分区都打开)。

-(适用RT500/600)The SRAM2,3   region [0x10000-0x1BFFF] is reserved for ROM code. 
-(适用RT500/600)The SRAM0,3   region [0x0-0xFFFF], [0x1C000-0x1FFFF] are reserved for app-specific use cases. 
-(适用RT500/600)The SRAM4-11  region [0x20000-0x7FFFF] is reserved for Non-cached shared memory between M33 and DSP. 
-(适用RT500)    The SRAM12-21 region [0x80000-0x27FFFF] is reserved for DSP code and data.

全部 SRAM 分区的电源开关在 SYSCTL0->PDRUNCFG2,3寄存器中,其中 PDRUNCFG2 控制的是 SRAM 各分区存储介质的电,PDRUNCFG3 控制的是 SRAM 各分区外围支持电路(线性驱动器、感测放大器)的电。如果我们想在保持 SRAM 中内容的情况下省电,可以仅操作 PDRUNCFG3 去关闭外围。

image.png

二、功耗测量方法

功耗测量最简单的办法就是找一个万用表,调节到电流测量模式,将其串到 VDDCORE 信号上,MIMXRT595-EVK (Rev.D3) 板卡特地设计了 JS25 接头,方便测量电流。

image.png

板子上电,应用程序加载执行后,便可以实时观测到运行时电流。不过电流测量有几个注意事项:

1. 不要挂载调试器在线运行时测量电流,会导致结果偏大。
2. 应用程序里如果有涉及模块电源开关代码,不要使能编译器优化等级,防止代码优化影响结果(电源开关有顺序要求)。
3. 如果是 CPU 高频运算相关代码,不同编译器下会导致结果不同,因为代码密度可能有差异。
4. 即使是单纯 while (1) 执行(可以在前面按需要加多个 NOP() 改变 while(1) 指令地址),指令地址不同也可能导致结果不同。

image.png

三、功耗测量结果

最后痞子衡在 MIMXRT595-EVK (Rev.D3) 板上借助 \SDK_2_13_1_EVK-MIMXRT595\boards\evkmimxrt595\demo_apps\hello_world\iar 模板例程(debug Build,需要修改 main 函数以及相应修改链接文件),来测试代码在不同 SRAM 分区下执行的电流情况:

void sram_power_cfg(void)
{
    PRINTF("CPU Frequency %d\n", CLOCK_GetFreq(kCLOCK_CoreSysClk));
    PRINTF("Main Clock %d\n", CLOCK_GetFreq(kCLOCK_BusClk));
    // 控制 SRAM 分区电源
    SYSCTL0->PDRUNCFG2_SET = 0xFFFFFFFC;
    SYSCTL0->PDRUNCFG3_SET = 0xFFFFFFFC;
    PRINTF("PDRUNCFG 0x%x, 0x%x, 0x%x, 0x%x\n", SYSCTL0->PDRUNCFG0, SYSCTL0->PDRUNCFG1, SYSCTL0->PDRUNCFG2, SYSCTL0->PDRUNCFG3);
}

int main(void)
{
    BOARD_InitPins();
    BOARD_BootClockRUN();
    BOARD_InitDebugConsole();
    sram_power_cfg();
    // 增减 nop 指令数量来控制 while(1) 指令地址
    asm("nop");
    //asm("nop");
    //asm("nop");
    //asm("nop");
    while (1)
    {
    }
}

最终测试结果如下,不同大小的 SRAM 分区功耗是有差异的,并且即使 SRAM 分区大小相同,功耗也可能有差异。此外 while(1) 指令地址不同导致的运行功耗差异也不小:

image.png

至此,从功耗测试角度了解i.MXRTxxx系列片内SRAM分区电源控制痞子衡便介绍完毕了,掌声在哪里~~~

作者:痞子衡
来源:痞子衡嵌入式

推荐阅读

欢迎大家点赞留言,更多Arm技术文章动态请关注极术社区嵌入式客栈专栏欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
2889
内容数
282
分享一些在嵌入式应用开发方面的浅见,广交朋友
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息