19

K_b0KBsM · 5月10日 · 广东

创客项目秀|本地语音聊天机器人:在reComputer 上部署 Riva 和 LIama2

随着人工智能技术的快速发展,语音交互已成为越来越重要的人机交互模式。特别是在智能家居、个人助理和客户服务支持等领域,对语音聊天机器人的需求正在显着增长。然而,现有的大多数语音聊天机器人都依赖于云计算服务,这在一定程度上引发了对数据隐私和网络延迟的担忧.
workflow.png

该项目旨在通过构建本地运营的语音聊天机器人来解决这些问题。利用 Nvidia Riva 和 Meta Llama2,我们开发了一个安全、私密且快速响应的语音交互系统。

材料清单

  • 具有超过 16GB 内存的 Jetson 设备。
  • 硬件设备需要使用 jetpack 5.1.1 操作系统进行预刷机。
  • 扬声器和麦克风。

注意:我使用 Jetson AGX Orin 32GB H01 套件完成了所有实验,但您可以尝试使用内存较少的设备加载较小的模型

制作步骤

硬件连接

将音频输入/输出设备连接到 reComputer。

打开重新计算机的电源,并确保其具有正常的网络访问权限。

安装 Riva 服务器,详情请参考此处:
https://docs.nvidia.com/deepl...

第1步,访问并登录 NVIDIA NGC

https://catalog.ngc.nvidia.co...
setup_riva_1.png

第2步,获取 NGC API 密钥
Account(top right corner) --> Setup --> Get API Key --> Generate API Key --> Confirm

setup_riva_2.png

第3步,在 reComputer 上配置 NGC

打开reComputer终端(您可以使用快捷键在reComputer的桌面上快速打开终端,也可以使用另一台计算机远程访问reComputer的终端)并逐个输入以下命令。Ctrl+Alt+T

cd ~ && mkdir ngc_setup && cd ngc_setup
wget --content-disposition https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-apps/ngc_cli/versions/3.36.0/files/ngccli_arm64.zip && unzip ngccli_arm64.zip 
chmod u+x ngc-cli/ngc
echo "export PATH=\"\$PATH:$(pwd)/ngc-cli\"" >> ~/.bash_profile && source ~/.bash_profile
ngc config set

在终端交互界面输入相关信息。
setup_riva_3.png

第4步,在reComputer上安装并运行Riva服务器

在reComputer的终端中,输入以下命令。

cd ~ && mkdir riva_setup && cd riva_setup
ngc registry resource download-version nvidia/riva/riva_quickstart_arm64:2.13.1
cd riva_quickstart_v2.13.1

用于修改配置Vim文件。

vim config.sh

# Press the `A` key on the keyboard to enter edit mode.
# Edit lines 18 and 20 following the instructions below.

# service_enabled_nlp=true --> service_enabled_nlp=false
# service_enabled_nmt=true --> service_enabled_nmt=false

# Press the `ESC` on the keyboard to exit edit mode, then use the shortcut `Shift+Z Z` to save the edited content and close the editor.

编辑后的 Config.sh 配置文件:

# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

# GPU family of target platform. Supported values: tegra, non-tegra
riva_target_gpu_family="non-tegra"

# Name of tegra platform that is being used. Supported tegra platforms: orin, xavier
riva_tegra_platform="orin"

# Enable or Disable Riva Services
# For any language other than en-US: service_enabled_nlp must be set to false
service_enabled_asr=true
service_enabled_nlp=false
service_enabled_tts=true
service_enabled_nmt=false

# Configure translation services
# Text-to-Text translation (T2T):
# - service_enabled_nmt must be set to true
# - Uncomment desired model for source and target languages in models_nmt field
# Speech-to-Text translation (S2T):
# - service_enabled_asr, service_enabled_nmt must be set to true
# - Set language code of input speech in the asr_language_code field
# - Uncomment desired model for source and target languages in models_nmt field
# Speech-to-Speech translation (S2S):
# - service_enabled_asr, service_enabled_nmt, service_enabled_tts must be set to true
# - Set language code of input speech in the asr_language_code field
# - Uncomment desired model for source and target languages in models_nmt field
# - Set language code of output speech in the tts_language_code field

# Enable Riva Enterprise
# If enrolled in Enterprise, enable Riva Enterprise by setting configuration
# here. You must explicitly acknowledge you have read and agree to the EULA.
# RIVA_API_KEY=<ngc api key>
# RIVA_API_NGC_ORG=<ngc organization>
# RIVA_EULA=accept

# Language code to fetch ASR models of a specific language
# Supported language codes: ar-AR, en-US, en-GB, de-DE, es-ES, es-US, fr-FR, hi-IN, it-IT, ja-JP, ru-RU, ko-KR, pt-BR, zh-CN, es-en-US, ja-en-JP
# For multiple languages enter space separated language codes.
asr_language_code=("en-US")

# ASR acoustic model architecture
# Supported values are: conformer, conformer_xl (en-US + amd64 only), citrinet_1024, citrinet_256 (en-US + arm64 only), jasper (en-US + amd64 only), quartznet (en-US + amd64 only)
asr_acoustic_model=("conformer")

# ASR acoustic model architecture variant
# Supported values for the architecture are:
# conformer: unified(de-DE, ja-JP and zh-CN only), ml_cs(es-en-US only), unified_ml_cs(ja-en-JP only)
# For the default model, keep the field empty
asr_acoustic_model_variant=("")

# ASR decoder type to be used
# If you'd like to use greedy decoder for ASR instead of flashlight/os2s decoder then set the below $use_asr_greedy_decoder to true
use_asr_greedy_decoder=false

# Language code to fetch TTS models of a specific language
# Supported language codes: en-US, es-ES, it-IT, de-DE, zh-CN
# For multiple languages enter space separated language codes
tts_language_code=("en-US")

# Specify one or more GPUs to use
# specifying more than one GPU is currently an experimental feature, and may result in undefined behaviours.
gpus_to_use="device=0"

# Specify the encryption key to use to deploy models
MODEL_DEPLOY_KEY="tlt_encode"

# Locations to use for storing models artifacts
#
# If an absolute path is specified, the data will be written to that location
# Otherwise, a Docker volume will be used (default).
#
# riva_init.sh will create a `rmir` and `models` directory in the volume or
# path specified.
#
# RMIR ($riva_model_loc/rmir)
# Riva uses an intermediate representation (RMIR) for models
# that are ready to deploy but not yet fully optimized for deployment. Pretrained
# versions can be obtained from NGC (by specifying NGC models below) and will be
# downloaded to $riva_model_loc/rmir by `riva_init.sh`
#
# Custom models produced by NeMo or TLT and prepared using riva-build
# may also be copied manually to this location $(riva_model_loc/rmir).
#
# Models ($riva_model_loc/models)
# During the riva_init process, the RMIR files in $riva_model_loc/rmir
# are inspected and optimized for deployment. The optimized versions are
# stored in $riva_model_loc/models. The riva server exclusively uses these
# optimized versions.
riva_model_loc="riva-model-repo"

if [[ $riva_target_gpu_family == "tegra" ]]; then
    riva_model_loc="`pwd`/model_repository"
fi

# The default RMIRs are downloaded from NGC by default in the above $riva_rmir_loc directory
# If you'd like to skip the download from NGC and use the existing RMIRs in the $riva_rmir_loc
# then set the below $use_existing_rmirs flag to true. You can also deploy your set of custom
# RMIRs by keeping them in the riva_rmir_loc dir and use this quickstart script with the
# below flag to deploy them all together.
use_existing_rmirs=false

# Ports to expose for Riva services
riva_speech_api_port="50051"

# NGC orgs
riva_ngc_org="nvidia"
riva_ngc_team="riva"
riva_ngc_image_version="2.13.1"
riva_ngc_model_version="2.13.0"

# Pre-built models listed below will be downloaded from NGC. If models already exist in $riva-rmir
# then models can be commented out to skip download from NGC

########## ASR MODELS ##########

models_asr=()

for lang_code in ${asr_language_code[@]}; do
    modified_lang_code="${lang_code//-/_}"
    modified_lang_code=${modified_lang_code,,}

    decoder=""
    if [ "$use_asr_greedy_decoder" = true ]; then
      decoder="_gre"
    fi

    if [[ ${asr_acoustic_model_variant} != "" ]]; then
      if [[ ${asr_acoustic_model} == "conformer" && ${asr_acoustic_model_variant} != "unified" && ${asr_acoustic_model_variant} != "ml_cs" && ${asr_acoustic_model_variant} != "unified_ml_cs" ]]; then
        echo "Valid variants for Conformer are: unified, ml_cs and unified_ml_cs."
        exit 1
      elif [[ ${asr_acoustic_model} != "conformer" ]]; then
        echo "Invalid variant for ${asr_acoustic_model}."
        exit 1
      fi
      asr_acoustic_model_variant="_${asr_acoustic_model_variant}"
    fi

    if [[ ${asr_acoustic_model} == "conformer_xl" && ${lang_code} != "en-US" ]]; then
      echo "Conformer-XL acoustic model is only available for language code en-US."
      exit 1
    fi

    if [[ ${asr_acoustic_model_variant} == "_unified" && ${lang_code} != "de-DE" && ${lang_code} != "ja-JP" && ${lang_code} != "zh-CN" ]]; then
      echo "Unified Conformer acoustic model is only available for language code de-DE, ja-JP and zh-CN."
      exit 1
    fi

    if [[ ${asr_acoustic_model_variant} == "_ml_cs" && ${lang_code} != "es-en-US" ]]; then
      echo "Multilingual Code Switch Conformer acoustic model is only available for language code es-en-US."
      exit 1
    fi

    if [[ ${asr_acoustic_model_variant} == "_unified_ml_cs" && ${lang_code} != "ja-en-JP" ]]; then
      echo "Unified Multilingual Code Switch Conformer acoustic model is only available for language code ja-en-JP."
      exit 1
    fi

    if [[ $riva_target_gpu_family  == "tegra" ]]; then

      if [[ ${asr_acoustic_model} == "jasper" || \
            ${asr_acoustic_model} == "quartznet" || \
            ${asr_acoustic_model} == "conformer_xl" ]]; then
          echo "Conformer-XL, Jasper and Quartznet models are not available for arm64 architecture"
          exit 1
      fi

      if [[ ${asr_acoustic_model} == "citrinet_256" && ${lang_code} != "en-US" ]]; then
        echo "For arm64 architecture, citrinet_256 acoustic model is only available for language code en-US."
        exit 1
      fi

      models_asr+=(
      ### Streaming w/ CPU decoder, best latency configuration
          "${riva_ngc_org}/${riva_ngc_team}/models_asr_${asr_acoustic_model}${asr_acoustic_model_variant}_${modified_lang_code}_str:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"

      ### Offline w/ CPU decoder
      #    "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${asr_acoustic_model}${asr_acoustic_model_variant}_${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}"
      )
    else

      if [[ ${asr_acoustic_model} != "conformer" && \
            ${asr_acoustic_model} != "conformer_xl" && \
            ${asr_acoustic_model} != "citrinet_1024" && \
            ${asr_acoustic_model} != "jasper" && \
            ${asr_acoustic_model} != "quartznet" ]]; then
        echo "For amd64 architecture, valid acoustic models are conformer, conformer_xl, citrinet_1024, jasper and quartznet."
        exit 1
      fi

      if [[ (${asr_acoustic_model} == "jasper" || \
            ${asr_acoustic_model} == "quartznet") && \
            ${lang_code} != "en-US" ]]; then
        echo "jasper and quartznet acoustic models are only available for language code en-US."
        exit 1
      fi

      models_asr+=(
      ### Streaming w/ CPU decoder, best latency configuration
       "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${asr_acoustic_model}${asr_acoustic_model_variant}_${modified_lang_code}_str${decoder}:${riva_ngc_model_version}"

      ### Streaming w/ CPU decoder, best throughput configuration
      #    "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${asr_acoustic_model}${asr_acoustic_model_variant}_${modified_lang_code}_str_thr${decoder}:${riva_ngc_model_version}"

      ### Offline w/ CPU decoder
          "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${asr_acoustic_model}${asr_acoustic_model_variant}_${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}"
      )
    fi

    ### Punctuation model
    if [[ ${asr_acoustic_model_variant} != "_unified" && ${asr_acoustic_model_variant} != "_unified_ml_cs" ]]; then
      pnc_lang=$(echo $modified_lang_code | cut -d "_" -f 1)
      pnc_region=${modified_lang_code##*_}
      modified_lang_code=${pnc_lang}_${pnc_region}
      if [[ $riva_target_gpu_family == "tegra" ]]; then
        models_asr+=(
            "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base_${modified_lang_code}:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
        )
      else
        models_asr+=(
            "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base_${modified_lang_code}:${riva_ngc_model_version}"
        )
      fi
    fi
done

### Speaker diarization model
models_asr+=(
#    "${riva_ngc_org}/${riva_ngc_team}/rmir_diarizer_offline:${riva_ngc_model_version}"
)

########## NLP MODELS ##########

if [[ $riva_target_gpu_family == "tegra" ]]; then
  models_nlp=(
  ### Bert base Punctuation model
      "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"

  ### BERT Base Intent Slot model for misty domain fine-tuned on weather, smalltalk/personality, poi/map datasets.
  #    "${riva_ngc_org}/${riva_ngc_team}/models_nlp_intent_slot_misty_bert_base:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"

  ### DistilBERT Intent Slot model for misty domain fine-tuned on weather, smalltalk/personality, poi/map datasets.
  #    "${riva_ngc_org}/${riva_ngc_team}/models_nlp_intent_slot_misty_distilbert:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
  )
else
  models_nlp=(
  ### Bert base Punctuation model
      "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}"

  ### BERT base Named Entity Recognition model fine-tuned on GMB dataset with class labels LOC, PER, ORG etc.
  #    "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_named_entity_recognition_bert_base:${riva_ngc_model_version}"

  ### BERT Base Intent Slot model fine-tuned on weather dataset.
  #    "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_intent_slot_bert_base:${riva_ngc_model_version}"

  ### BERT Base Question Answering model fine-tuned on Squad v2.
  #    "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_question_answering_bert_base:${riva_ngc_model_version}"

  ### Megatron345M Question Answering model fine-tuned on Squad v2.
  #    "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_question_answering_megatron:${riva_ngc_model_version}"

  ### Bert base Text Classification model fine-tuned on 4class (weather, meteorology, personality, nomatch) domain model.
  #    "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_text_classification_bert_base:${riva_ngc_model_version}"
  )
fi

########## TTS MODELS ##########

models_tts=()

for lang_code in ${tts_language_code[@]}; do
  modified_lang_code="${lang_code//-/_}"
  modified_lang_code=${modified_lang_code,,}

  if [[ $riva_target_gpu_family == "tegra" ]]; then
    if [[ ${lang_code} == "en-US" ]]; then
      models_tts+=(
      ### These models have been trained with energy conditioning and use the International Phonetic Alphabet (IPA) for inference and training.
          "${riva_ngc_org}/${riva_ngc_team}/models_tts_fastpitch_hifigan_en_us_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
      #    "${riva_ngc_org}/${riva_ngc_team}/models_tts_radtts_hifigan_en_us_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"

      ### This model uses the ARPABET for inference and training.
      #    "${riva_ngc_org}/${riva_ngc_team}/models_tts_fastpitch_hifigan_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
      )
    elif [[ ${lang_code} == "zh-CN" ]]; then
      models_tts+=(
      ### This model is multi-speaker with emotion and and use the International Phonetic Alphabet (IPA) for inference and training.
          "${riva_ngc_org}/${riva_ngc_team}/models_tts_fastpitch_hifigan_zh_cn_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
      )
    else
      ### These models are single-speaker and use the International Phonetic Alphabet (IPA) for inference and training.
      if [[ ${lang_code} != "de-DE" ]]; then
        models_tts+=(
            "${riva_ngc_org}/${riva_ngc_team}/models_tts_fastpitch_hifigan_${modified_lang_code}_f_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
        )
      fi
      models_tts+=(
          "${riva_ngc_org}/${riva_ngc_team}/models_tts_fastpitch_hifigan_${modified_lang_code}_m_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
      )
    fi
  else
    if [[ ${lang_code} == "en-US" ]]; then
      models_tts+=(
      ### These models have been trained with energy conditioning and use the International Phonetic Alphabet (IPA) for inference and training.
          "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_fastpitch_hifigan_en_us_ipa:${riva_ngc_model_version}"
      #    "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_radtts_hifigan_en_us_ipa:${riva_ngc_model_version}"

      ### This model uses the ARPABET for inference and training.
      #    "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_fastpitch_hifigan_en_us:${riva_ngc_model_version}"
      )
    elif [[ ${lang_code} == "zh-CN" ]]; then
      models_tts+=(
      ### This model is multi-speaker with emotion and and use the International Phonetic Alphabet (IPA) for inference and training.
          "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_fastpitch_hifigan_zh_cn_ipa:${riva_ngc_model_version}"
      )
    else
      ### These models are single-speaker and use the International Phonetic Alphabet (IPA) for inference and training.
      if [[ ${lang_code} != "de-DE" ]]; then
        models_tts+=(
            "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_fastpitch_hifigan_${modified_lang_code}_f_ipa:${riva_ngc_model_version}"
        )
      fi
      models_tts+=(
          "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_fastpitch_hifigan_${modified_lang_code}_m_ipa:${riva_ngc_model_version}"
      )
    fi
  fi
done

######### NMT models ###############

# Models follow Source language _ One or more target languages model architecture
# Source or target language "any" means the model supports 32 languages mentioned in docs.
# e.g., rmir_nmt_de_en_24x6 is a German to English 24x6 bilingual model
# and rmir_megatronnmt_en_any_500m is a English to 32 languages megatron model

models_nmt=(
  ###### Bilingual models
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_de_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_es_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_zh_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_ru_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_fr_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_de_en_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_es_en_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_ru_en_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_zh_en_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_fr_en_24x6:${riva_ngc_model_version}"

  ###### Multilingual models
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_deesfr_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_en_deesfr_12x2:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_deesfr_en_24x6:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_deesfr_en_12x2:${riva_ngc_model_version}"

  ###### Megatron models
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_any_en_500m:${riva_ngc_model_version}"
  #"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_en_any_500m:${riva_ngc_model_version}"
)

NGC_TARGET=${riva_ngc_org}
if [[ ! -z ${riva_ngc_team} ]]; then
  NGC_TARGET="${NGC_TARGET}/${riva_ngc_team}"
else
  team="\"\""
fi

# Specify paths to SSL Key and Certificate files to use TLS/SSL Credentials for a secured connection.
# If either are empty, an insecure connection will be used.
# Stored within container at /ssl/servert.crt and /ssl/server.key
# Optional, one can also specify a root certificate, stored within container at /ssl/root_server.crt
ssl_server_cert=""
ssl_server_key=""
ssl_root_cert=""

# define Docker images required to run Riva
image_speech_api="nvcr.io/${NGC_TARGET}/riva-speech:${riva_ngc_image_version}"

# define Docker images required to setup Riva
image_init_speech="nvcr.io/${NGC_TARGET}/riva-speech:${riva_ngc_image_version}-servicemaker"

# daemon names
riva_daemon_speech="riva-speech"
if [[ $riva_target_gpu_family != "tegra" ]]; then
    riva_daemon_client="riva-client"
Fi   

使用类似的方法修改 /etc/docker/daemon.json。

sudo vim /etc/docker/daemon.json
# Add this line >> "default-runtime": "nvidia"

# Press the `ESC` on the keyboard to exit edit mode, then use the shortcut `Shift+Z Z` to save the edited content and close the editor.

sudo systemctl restart docker

编辑后的配置文件如下:

/etc/docker/daemon.json
{   
    "default-runtime": "nvidia",
        "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

使用以下命令初始化并启动 Riva:

sudo bash riva_init.sh
sudo bash riva_start.sh

setup_riva_4.png

安装并运行 LLM
为了简化安装过程,我们可以参考 Dusty 的 jetson-containers 项目来安装文本生成推理,并使用文本生成推理来加载 Llama2 7B 大型语言模型。打开一个新终端并运行以下命令。

cd ~
git clone https://github.com/dusty-nv/jetson-containers.git
cd jetson-containers
pip install -r requirements.txt
./run.sh $(./autotag text-generation-inference)
export HUGGING_FACE_HUB_TOKEN=<your hugging face token>
text-generation-launcher --model-id meta-llama/Llama-2-7b-chat-hf --port 8899

install_run_llm.png

克隆本地聊天机器人演示并尝试运行它。​

现在,您应该至少打开两个终端,一个运行 Riva 服务器,另一个运行文本生成推理服务器。接下来,我们需要打开一个新终端来运行我们的演示。

cd ~
git clone https://github.com/yuyoujiang/Deploy-Riva-LLama-on-Jetson.git
cd Deploy-Riva-LLama-on-Jetson

# Query audio input/output devices.
python3 local_chatbot.py --list-input-devices
python3 local_chatbot.py --list-output-devices

python3 local_chatbot.py --input-device <your device id> --output-device <your device id>
# For example: python3 local_chatbot.py --input-device 25 --output-device 30
推荐阅读
关注数
8483
内容数
48
深度服务产业的国际化双创平台
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息