半导体行业观察 · 5月29日 · 安徽

金刚石芯片,商用在即

这两年,金刚石逐渐成为了半导体行业的热点。

为了实现去碳化目标,过去几年时间中,行业正在不断追求更高效、更强大的半导体,氮化镓(GaN)和碳化硅(SiC)等半导体材料的出现与发展,让行业突破了硅的限制,开发出更高效、更可持续的技术,如今这些材料在可再生能源系统、电动汽车和其他减少碳排放的技术中发挥着关键作用。

而在氮化镓和碳化硅之后,金刚石也就是钻石,作为一种新半导体材料闯入了大家的视线当中,并引发了研究人员和行业专家的关注。

金刚石以其无与伦比的硬度和亮度而闻名,半个多世纪以来,珠宝首饰是它最广泛也是最有价值的用途,如今它又因自己的特性,在半导体材料中开辟了一番广阔的前景。

金刚石芯片,有何优势

与现有的半导体材料相比,金刚石主要具有三大优势:热管理、成本/效率优化和二氧化碳减排。

在所有传统的功率转换器中,冷却系统都是一个必要的累赘。与大多数半导体材料不同,金刚石的电阻率随温度升高而降低。因此,用这种材料制成的设备在 150 摄氏度(功率设备的典型工作温度)下比在室温下性能更好。虽然必须花费大量精力来冷却暴露在高温下的硅或碳化硅器件,但只需让金刚石在运行过程中找到一个稳定的状态即可。

金刚石还是一种良好的散热器。由于散热损耗少、散热能力强且能在高温下工作,用金刚石有源器件制成的转换器可以比基于硅的解决方案轻 5 倍、小 5 倍,比基于碳化硅的解决方案轻 3 倍、小 3 倍。

在设计设备和转换器时,必须在系统的能效与成本、尺寸和重量之间做出权衡。金刚石也不例外,但金刚石能在关键参数上为更节能的电动汽车带来价值。

如果重点是降低设备成本,那么可以设计出比碳化硅芯片成本低 30% 的金刚石芯片,因为在电气性能和效率相同的情况下,金刚石芯片比同等的碳化硅芯片少消耗 50 倍的金刚石面积,而且热管理更好。

如果注重效率,金刚石与碳化硅相比,可将能量损耗降低三倍,芯片体积最多可缩小 4 倍,从而直接节省能耗。

如果侧重于系统体积和重量,通过提高开关频率,金刚石器件可将无源元件的体积比基于碳化硅的转换器减少四倍。除了体积上的减少之外,还可以通过缩小散热器来实现。

值得一提的是,金刚石还具备极高的绝缘性。衡量不同材料绝缘性好坏的一大重要指标是击穿电场强度,表示材料能承受的最大电压不造成电击穿。作为对比,硅材料的击穿电场强度为0.3 MV/cm左右,SiC为3 MV/cm,GaN为5 MV/cm,而钻石则为10 MV/cm,而且即使是非常薄的钻石切片也具有非常高的电绝缘性,能够抵抗非常高的电压。

从具体用途来看,金刚石基板具有优异的导热性,可为高功率 5G 元件(基站、放大器)实现高效散热,确保运行稳定性并防止过热。5G 基础设施的不断推出和对更快数据速度的无限需求,推动了各种 5G 相关设备对金刚石基板的采用。5G 数据流量的指数级增长意味着需要设备能够管理在极高频率下产生的大功率密度。金刚石衬底为这些问题提供了答案。

此外,与传统的硅基解决方案相比,金刚石衬底与氮化镓或碳化硅配对,可制造出工作电压更高、频率更高、能效更高的功率器件,电动汽车、用于可再生能源的电源逆变器、工业电机驱动器、大功率激光器和先进电源都是金刚石衬底应用日益广泛的领域。

金刚石衬底作为出色的散热器,可以延长这些设备的使用寿命和可靠性。而随着向更清洁能源的过渡和汽车电气化进程的加快,金刚石衬底也将发挥至关重要的作用。尽量减少功率转换过程中的能量损耗可以提高整体效率,这是电动汽车和可持续电网的一个重要方面。金刚石基底能够设计出更紧凑、重量更轻的电力电子器件,这对电动汽车等空间受限的应用至关重要。

国外的Virtuemarket的数据指出,2023年全球金刚石半导体基材市场价值为1.51亿美元,预计到2030年底市场规模将达到3.42亿美元。在2024-2030年的预测期内,该市场预计将以复合年增长率增长12.3%。其认为,在中国、日本和韩国等国家电子和半导体行业不断增长的需求的推动下,亚太地区预计将主导金刚石半导体衬底市场,到 2023 年将占全球收入份额的 40% 以上。

金刚石芯片,面临挑战

当然,性能如此优秀的半导体材料,在其他方面不免受到一些限制。

首先就是成本。与硅相比,碳化硅的成本是其 30 到 40 倍,而氮化镓的成本是其 650 到 1300 倍。用于半导体研究的合成金刚石材料的价格约为硅的 10,000 倍。

另一个问题是金刚石晶片尺寸太小,市场上最大的金刚石晶片尺寸还不到 10 平方毫米。使用离子注入法掺杂这种材料很困难,而且这种材料的电荷载流子活化效率在室温下会降低。

为了解决生产应用方面的问题,不少公司都在努力攻关金刚石量产的相关技术。2023年初,日本佐贺大学与日本Orbray共同合作开发了金刚石制成的功率半导体,他们在蓝宝石衬底上制成2英寸的单晶圆,2023年10月,美国的Diamond Foundry于成功制造出了世界上第一块单晶钻石晶圆,直径约4英寸。

除了上述两家公司外,位于法国格勒诺布尔的半导体金刚石初创公司Diamfab也在为了金刚石芯片的技术而不断努力。

今年3月,该公司宣布获得870万欧元的首轮融资。这笔资金来自Asterion Ventures、法国政府代表法国政府管理的法国科技种子基金(法国2030的一部分)、Kreaxi与Avenir Industrie Auvergne-Rhône-Alpes地区基金、Better Angle、Hello Tomorrow和格勒诺布尔阿尔卑斯大区。

Diamfab 是法国国家科学研究中心(CNRS)实验室奈尔研究所(Institut Néel)的衍生产品,也是 30 年来合成金刚石生长研发的成果。Diamfab 项目最初在格勒诺布尔阿尔卑斯 SATT Linksium 进行孵化,该公司于 2019 年 3 月成立,由两位纳米电子学博士和半导体金刚石领域公认的研究人员 Gauthier Chicot 和 Khaled Driche 创办。

Diamfab表示,为了满足汽车、可再生能源和量子产业的半导体和功率元件市场需求,公司在合成金刚石的外延和掺杂领域开发出了突破性技术。其在合成金刚石的外延和掺杂领域开发出了突破性技术,并拥有四项专利,其专长在于薄金刚石层的生长和掺杂,以及金刚石电子元件的设计。

第一轮融资将使 Diamfab 能够建立一条试验生产线,对其技术进行工业化前处理,加速其发展,从而满足对金刚石半导体日益增长的需求。

Diamfab此前已经申请了全金刚石电容器的专利,并正在与该领域的领先企业合作, Diamfab 首席执行官 Gauthier Chicot 说道:“在其他参数中,我们已经实现了我们的目标:超过 1000A/cm2 的高电流密度和大于 7.7MV/cm 的击穿电场。这些是未来设备性能的关键参数,并且已经优于 SiC 等现有材料为电力电子设备提供的参数。此外,我们有一个明确的路线图,到 2025 年实现 4 英寸晶圆,作为大规模生产的关键推动因素。”

“在过去的两年中,我们在与研发团队合作加工高附加值金刚石晶片方面取得了重大进展。现在,我们基于双重业务模式的应用导向方法将使我们能够与更广泛的工业合作伙伴合作,开发和销售高附加值金刚石晶片和我们的专利金刚石设备制造工艺,同时还能以轻型工厂模式直接向最终用户销售产品,”Chicot 说。

“在像我们这样的尖端产业的发展过程中,每个阶段都至关重要。试点项目将促进我们与合作伙伴的许多讨论,并加强我们之间的关系。与致力于该行业和气候的投资者合作,最重要的是他们了解该行业的制约因素和联系,这一点至关重要,” Chicot表示。

“我们开发的技术可以大大减少半导体的历史碳足迹,并通过转移欧洲的关键产业来实现这一目标,这也是我们与 Asterion 合作的投资重点之一,”负责此次交易的 Asterion Ventures 合伙人 Charles-Henry Choel 解释说,“工业深度技术公司需要冷静、长期的支持,而这正是我们所能提供的。”

无独有偶,美国的Advent Diamond也是这样一家致力于将金刚石半导体材料量产的初创公司,今年4月,该公司接受了EE Times 采访,披露了自己在这一方面的进展。

据了解,Advent Diamond 公司的核心创新之一是在首选基底上生长单晶掺磷金刚石的能力,它是美国唯一一家拥有这种能力的公司。掺磷技术的意义尤其重大,因为它能在金刚石中制造出 n 型半导体,而这正是电子设备开发的关键要素。此外,Advent Diamond 公司在大面积生长掺硼金刚石层方面也取得了里程碑式的进展,拓展了基于金刚石的电子产品的潜在应用领域。

Advent Diamond的专业技术不仅限于材料生长,还包括全面的元件设计、制造和表征能力。这包括蚀刻、光刻和金属化等先进的洁净室工艺,以及显微镜、椭偏仪和电学测量等一整套表征技术。Advent Diamond表示,自己利用这种尖端生长技术,开发出了杂质浓度极低的本征金刚石层,确保了半导体级金刚石材料的最高质量和性能标准。

Advent Diamond 联合创始人兼首席执行官 Manpuneet Benipal表示,Advent Diamond正在开发的创新型金刚石辐射探测器为国防、商业和科学市场提供了变革性的解决方案。通过利用掺杂和本征半导体金刚石层,这些探测器在探测高能粒子辐射方面具有卓越的辐射硬度和噪声抑制能力。这些探测器用途广泛,从紫外线和阿尔法粒子到 X 射线和质子,彰显了Advent Diamond的技术实力。

Benipal指出,目前Advent Diamond已有 1 到 2 英寸的镶嵌金刚石晶片,并正在努力将晶片尺寸扩大到 4 英寸。然而,缺陷密度仍然是一个关键问题,大多数晶片的缺陷约为 108个/平方厘米或更高。他表示,必须将缺陷降低到 103缺陷/平方厘米,才能实现预期性能。

为了应对这些挑战,有关机构正在资助可扩展的金刚石技术项目,强调开发高质量的材料和先进的半导体器件。在全球范围内,研究小组正致力于改进二极管、晶体管和集成电路等金刚石器件结构。这项合作旨在推动金刚石半导体进入主流应用领域,提高关键领域的性能和可靠性。

“Advent Diamond 正在引领成熟的掺杂 [p 型和 n 型] 和本征金刚石材料层的开发,以及由这些优质金刚石层制成的组件/设备,用于电气化、电信和量子技术的应用,” Manpuneet Benipal说,“金刚石表现出卓越的电气和材料特性,超越了 GaN 和 SiC,我们的目标是将这些特性转化为卓越的半导体器件性能。我们的愿景是将具有无与伦比的规格和性能的金刚石半导体器件引入商业市场,刺激电气化、电信和量子应用领域的创新。我们特别重视表面处理,例如反应离子蚀刻和与金刚石兼容的化学机械抛光,以减少缺陷、增强界面、提高均匀性和结晶度,并在不同厚度的掺杂和本征金刚石层中保持受控的掺杂浓度。这种方法可确保创建高性能的金刚石半导体器件、辐射传感器和量子材料/器件,以供广泛的商业应用。Advent Diamond 有望成为第一个将金刚石 RF 二极管和其他突破性半导体器件推向市场的公司。”

在美国,还有一家名为Akhan Semiconductor的公司也在致力于金刚石半导体材料的研发,其成立于2007年,早在2013年左右就获得了美国能源部阿贡国家实验室开发的突破性低温金刚石沉积技术的独家金刚石半导体应用许可权。

这项技术可以在低至 400 摄氏度的温度下在各种晶片基底材料上沉积纳米晶金刚石。来自阿贡的低温金刚石技术与 Akhan 的 Miraj Diamond 工艺相结合,打破了半导体行业中金刚石薄膜的使用仅限于 p 型掺杂的障碍。

Akhan在后续正式宣布了自己的Miraj Diamond平台,它开发了一种申请专利的新工艺,其中在硅上创建 n 型金刚石材料,具有以前未证实的特性,例如 250 meV(a) 的浅电离能、高载流子迁移率(纳米晶金刚石薄膜中大于 1000 cm2/Vs)、无石墨相以及低压大电流二极管器件应用中先前未证实的性能(+2V 正向偏压时电流密度为 900(b) A/mm2)。

2021年8月,Akhan又宣布开发出首款将 CMOS 硅与金刚石基板结合在一起的 300 毫米(12 英寸)晶圆,取得了阶段性的里程碑。

Akhan的创始人兼首席执行官Adam Khan在今年1月成立了新公司Diamond Quanta,该公司专注于半导体领域,目的是利用金刚石的优异特性为电力电子和量子光子设备提供先进的解决方案。

Diamond Quanta在5月宣布,其拥有的“统一金刚石框架”有利于真正的取代掺杂。这项创新技术将新元素无缝地融入钻石的结构中,赋予钻石新的特性,同时又不破坏其晶体完整性。因此,金刚石(一种传统上以其绝缘特性而闻名的材料)已转变为能够支持负(n 型)和正(p 型)电荷载流子的高性能半导体。这种迁移率水平表明金刚石晶格非常干净、有序,并且由于成功实施了减轻载流子传输缺陷影响的共掺杂策略,散射中心得到了有效钝化。此外,掺杂过程通过修正位错来细化现有的金刚石结构,从而提高材料的导电性。这些进步不仅保留而且增强了金刚石结构,避免了常见的缺陷,例如明显的晶格畸变或引入通常会降低迁移率的陷阱态。

“启动 Diamond Quanta 并开发这种先进的掺杂工艺是必要的。电子、汽车、航空航天、能源等行业一直在寻找一种半导体技术,能够应对其技术扩张不断变化的需求所带来的日益增长的压力。”Diamond Quanta 创始人兼首席执行官 Adam Khan 说道。“我们的技术不仅仅为寻求提高半导体效率的行业提供替代材料;我们正在推出一种全新材料,它将重新定义性能、耐用性和效率的标准,它将在无缝地为现代时代日益沉重的负载提供动力方面发挥不可或缺的作用。”

写在最后

与国外相比,虽然目前国内的金刚石产量较高,但在功能性应用的领域,尤其是对金刚石材料的开发,还处在较为落后的阶段。

西安电子科技大学芜湖研究院副院长王东曾在报告中提到,国内金刚石发展大而不强,在高端装备、电子级材料等众多领域处于落后。在CVD金刚石研究领域,从专利分布来看,美国、欧洲、日本的研究处于领先地位,我国发展相对缓慢,原创性研究偏少。

即便是国外,在量产商用这一材料上也还有很多的路要走,但我们相信,在各方的共同推动下,具备各种优异特性的金刚石材料在未来会得到进一步发展,帮助半导体材料领域迈出至关重要的一步。

推荐阅读
关注数
11320
内容数
1960
最有深度的半导体新媒体,实讯、专业、原创、深度,50万半导体精英关注。专注观察全球半导体最新资讯、技术前沿、发展趋势。
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息