MLIR_对自定义IR Dialect编写bufferization pass

最近在整理先前实习做的一些工作,主要是对AI compiler做基于mlir的重构,以下是之前写的compiler frontend的一个比较基础的pass,针对自定义的IR Dialect做bufferization。

一、bufferization概念

Bufferization 是MLIR中一个重要的过程,它主要负责将具有tensor(张量)语义的操作转换为具有memref(内存引用)语义的操作。

  • Tensor在MLIR中代表抽象值类型的数据序列,它们并不直接对应于内存中的位置。
  • MemRef(Memory Reference)则代表对内存区域的具体引用,提供了更低级别的缓冲区访问能力。
  • Bufferization将tensor的语义转换为memref的语义,memref提供了更直接、更具体的内存访问方式,减少了编译器需要处理的抽象层次。

二、实现

以下是在XPU上自定义TIR的一个conv2d mlir的示意 pass的功能就是实现将func和op的tensor type转为memref type(TIR->MTIR),实现共包含两个pass,六个pattern!

module {
  func.func @XPUFunc(%arg0: tensor<1x8x8x256xf32>) -> tensor<1x4x4x256xf32> attributes {input_names = ["data0"], input_num = 1 : i64, output_names = ["conv0_fix"]} {
    %0 = "tir.const"() {value = dense_resource<__elided__> : tensor<256x2x2x256xi8>} : () -> tensor<256x2x2x256xi8>
    %1 = "tir.const"() {value = dense_resource<__elided__> : tensor<256xi8>} : () -> tensor<256xi8>
    %2 = "tir.float2fix"(%arg0) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "data0_fix", round_mode = "XPU_ROUND"} : (tensor<1x8x8x256xf32>) -> tensor<1x8x8x256xi8>
    %3 = "tir.conv2d-fix"(%2, %0, %1) {dilation = [1 : i32, 1 : i32], group = 1 : i32, hsigmoid_in = -128 : i32, kernel = [2 : i32, 2 : i32], nonlinear = "NONE", op_name = "conv0", pad = [0 : i32, 0 : i32, 0 : i32, 0 : i32], pad_mode = "FLOOR", shift_hsigmoid = -128 : i32, shift_hswish = -128 : i32, stride = [2 : i32, 2 : i32]} : (tensor<1x8x8x256xi8>, tensor<256x2x2x256xi8>, tensor<256xi8>) -> tensor<1x4x4x256xi8>
    %4 = "tir.fix2float"(%3) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "conv0_fix", round_mode = "XPU_ROUND"} : (tensor<1x4x4x256xi8>) -> tensor<1x4x4x256xf32>
    return %4 : tensor<1x4x4x256xf32>
  }
}

ODS自定义OP .td写法示例

include "Tir_op_base.td"
def Tir_ConstOp :
    Tir_Op<"const", [ConstantLike, Pure, FirstAttrDerivedResultType]> {
  let summary = "Represent a constant tensor with values";
  let description = [{
    The constant operator providing initialized values for tensors.

    The initial values come either in `DenseElementsAttr` `value`, or from an
    external binary file specified in `path`.
  }];
  let arguments = (ins
    OptionalAttr<ElementsAttr>:$value
  );
  let results = (outs Tir_Tensor:$output);
  let hasFolder = 1;
}
...
...

2.1global_bufferize pass

实现分为两步pass,第一步为global_bufferize pass,即将func的argument和return的tensor type转为memref。代码和注释如下所示

/// @brief Early bufferization on global input/output and constants
class GlobalBufferize : public impl::GlobalBufferizeBase<GlobalBufferize> {
public:
  void runOnOperation() override { // 重写基类的runOnOperation函数
    auto *ctx = &getContext(); 
    //获取上下文,FuncOp的成员函数,用于后续创建新的Op、添加转换规则

    ConversionTarget target(*ctx);
    //ConversionTarget 用于指定在转换过程中哪些Op是合法的,哪些是需要动态检查的。
    target.addDynamicallyLegalOp<tir::ConstOp>([](Operation *op) {
      auto ttype = op->getResult(0).getType().cast<RankedTensorType>();
      return ttype.getRank() == 0;
    }); //tir.ConstOp返回维度数(秩)是0的时候也就是标量,才合法转换 //不然就转为memex.const
    target.addLegalOp<memex::ConstOp>(); //静态合法,不需要转换
    target.addLegalOp<tir::UpLoadOp>();
    target.addLegalOp<tir::DownLoadOp>();
    target.addDynamicallyLegalOp<mlir::func::ReturnOp>( 
        [](Operation *op) { return op->getNumOperands() == 0; });
    //ReturnOp返回数为0时合法。
    //因为后续用到了upload和download将func里面的argu2进行结果copy,所以不需要return结果了
    mlir::func::FuncOp func = getOperation(); //获取funcOp
    updateFuncOp(func); //更新Op的操作
    RewritePatternSet convertPatterns(ctx); //存Pattern的集合
    convertPatterns.insert<ConstOpConverter, ReturnOpConverter>(ctx); 
    //将ConstOp、ReturnOp的ConvertPattern加入set
    (void)applyPartialConversion(func, target, std::move(convertPatterns));
    //根据target中定义的规则进行convertpatternset中的转换
  }
};

} //
//创建返回pass对象
std::unique_ptr<mlir::Pass> tir::createGlobalBufferizePass() {
  return std::make_unique<GlobalBufferize>();
}

以上是globalbufferize pass的主要部分,在定义的target合法规则检查上应用了两个转换pattern和updateFuncOp。下面看updateFuncOp

static inline MemRefType tensorToMemRef(RankedTensorType type) {
  return MemRefType::get(type.getShape(), type.getElementType());
}
static void updateFuncOp(mlir::func::FuncOp func) {
    mlir::OpBuilder builder(func.getBody());
    //OpBuilder用于在Func Body内生成Op
    auto funcType = func.getFunctionType(); 
    //获取FuncOp的inputs、results类型信息
    llvm::SmallVector<Type, 4> argTypes; //存更新后的函数参数类型
    for (auto type : llvm::enumerate(funcType.getInputs())) {
    //遍历FuncOp的输入参数
        auto tensorType = type.value().dyn_cast<RankedTensorType>();
        if (tensorType) {
            auto argType = tensorToMemRef(tensorType); //将tensor转为memref
            auto arg = func.getArgument(type.index());
            arg.setType(argType);
            //以上三步将funcOp inputs的对应type由Tensor type转为MemRef type
            auto load = builder.create<tir::UpLoadOp>(func.getLoc(), tensorType, arg);
            //创建tir.upload op,将该Op的input和result(args)为tensor type
            arg.replaceAllUsesExcept(load->getResult(0), load);
            //loadOp input替换为memref,result还是tensor
            argTypes.emplace_back(argType);
        } else {
            argTypes.emplace_back(type.value());
        }
    }
    for (auto type : funcType.getResults()) {
        auto tensorType = type.cast<RankedTensorType>();
        auto argType = tensorToMemRef(tensorType);
        argTypes.emplace_back(argType);
        func.front().addArguments(argType, builder.getUnknownLoc());
    }
    //将funcOp的type根据argTypes vector进行替换
    func.setType(FunctionType::get(func.getContext(), argTypes, llvm::None));
}

总结:updateFuncOp 函数的作用是将输入参数和输出结果从 RankedTensorType 转换为 MemRefType,另外还创建了tir.uploadOp(memref->tensor)来获取对应input的memref类型输入转为tensor。 再来看两个convertpattern,对于ConstOpConvert,实现上是用自定义memtx.const(tensor->memtef)+tir.upload(memref->tensor)替换了原来的tir.const(tensor->tensor)

struct ConstOpConverter : public OpConversionPattern<ConstOp> {
  using OpConversionPattern<ConstOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ConstOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto tensorType = op.getOutput().getType().cast<RankedTensorType>();
    auto memRefType = tensorToMemRef(tensorType);
    auto mconst =
        rewriter.create<memtx::ConstOp>(op.getLoc(), memRefType, *op.getValue())
            .getResult();
    rewriter.replaceOpWithNewOp<tir::UpLoadOp>(op, tensorType, mconst);
    return success();
  }
};

struct ReturnOpConverter : public OpConversionPattern<mlir::func::ReturnOp> {
  using OpConversionPattern<mlir::func::ReturnOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(mlir::func::ReturnOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto func = op->getParentOfType<mlir::func::FuncOp>();
    unsigned retArgIndex = func.getNumArguments() - op.getNumOperands();
    for (auto opr : llvm::enumerate(adaptor.getOperands())) {
      auto outputArg = func.getArgument(retArgIndex + opr.index());
      rewriter.create<tir::DownLoadOp>(op.getLoc(), opr.value(), outputArg);
    }
    rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(op);
    return success();
  }
};

对于ReturnOpConverter,用tir.download替换returnOp,将输出结果从tensor转为memref global_bufferize pass后的结果如下,可以看到func的arg转为了memref,新增了tir.upload和download作为func arg输入memref->tensor的Op,memtx.const+tir.upload用于memref和tensor转换

module {
  func.func @XPUFunc(%arg0: memref<1x8x8x256xf32>, %arg1: memref<1x4x4x256xf32>) attributes {input_names = ["data0"], input_num = 1 : i64, output_names = ["conv0_fix"]} {
    %0 = "tir.upload"(%arg0) : (memref<1x8x8x256xf32>) -> tensor<1x8x8x256xf32>
    %1 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256x2x2x256xi8>} : () -> memref<256x2x2x256xi8>
    %2 = "tir.upload"(%1) : (memref<256x2x2x256xi8>) -> tensor<256x2x2x256xi8>
    %3 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256xi8>} : () -> memref<256xi8>
    %4 = "tir.upload"(%3) : (memref<256xi8>) -> tensor<256xi8>
    %5 = "tir.float2fix"(%0) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "data0_fix", round_mode = "XPU_ROUND"} : (tensor<1x8x8x256xf32>) -> tensor<1x8x8x256xi8>
    %6 = "tir.conv2d-fix"(%5, %2, %4) {dilation = [1 : i32, 1 : i32], group = 1 : i32, hsigmoid_in = -128 : i32, kernel = [2 : i32, 2 : i32], nonlinear = "NONE", op_name = "conv0", pad = [0 : i32, 0 : i32, 0 : i32, 0 : i32], pad_mode = "FLOOR", shift_hsigmoid = -128 : i32, shift_hswish = -128 : i32, stride = [2 : i32, 2 : i32]} : (tensor<1x8x8x256xi8>, tensor<256x2x2x256xi8>, tensor<256xi8>) -> tensor<1x4x4x256xi8>
    %7 = "tir.fix2float"(%6) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "conv0_fix", round_mode = "XPU_ROUND"} : (tensor<1x4x4x256xi8>) -> tensor<1x4x4x256xf32>
    "tir.download"(%7, %arg1) : (tensor<1x4x4x256xf32>, memref<1x4x4x256xf32>) -> ()
    return
  }
}

下面是新增的ODS自定义Op

include "tir_op_base.td"
include "mlir/Interfaces/SideEffectInterfaces.td"

def Tir_MemRef : StridedMemRefOf<[Tir_ElementType]>;
def Tir_UpLoadOp : Tir_Op<"upload", [NoMemoryEffect]> {
  let arguments = (ins Tir_MemRef:$mem);

  let results = (outs Tir_Tensor:$output);
}

def Tir_DownLoadOp : Tir_Op<"download"> {
  let arguments = (ins Tir_Tensor:$tensor, Tir_MemRef:$mem);
}

2.2tir2mtir_convert pass

直接上结果,我们的目的是将IR 做bufferization即不能出现出memref类型外的tensor类型,在前一个pass global_bufferize后,我们得到了IR所示的结果,在此基础上继续写第二个pass->tir2mtir_convert。

module {
  func.func @XPUFunc(%arg0: memref<1x8x8x256xf32>, %arg1: memref<1x4x4x256xf32>) attributes {input_names = ["data0"], input_num = 1 : i64, output_names = ["conv0_fix"]} {
    %alloc = memref.alloc() : memref<1x8x8x256xf32>
    "memtx.copy"(%arg0, %alloc) : (memref<1x8x8x256xf32>, memref<1x8x8x256xf32>) -> ()
    %0 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256x2x2x256xi8>} : () -> memref<256x2x2x256xi8>
    %alloc_0 = memref.alloc() : memref<256x2x2x256xi8>
    "memtx.copy"(%0, %alloc_0) : (memref<256x2x2x256xi8>, memref<256x2x2x256xi8>) -> ()
    %1 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256xi8>} : () -> memref<256xi8>
    %alloc_1 = memref.alloc() : memref<256xi8>
    "memtx.copy"(%1, %alloc_1) : (memref<256xi8>, memref<256xi8>) -> ()
    %alloc_2 = memref.alloc() : memref<1x8x8x256xi8>
    "mtir.float2fix"(%alloc, %alloc_2) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "data0_fix", round_mode = "XPU_ROUND"} : (memref<1x8x8x256xf32>, memref<1x8x8x256xi8>) -> ()
    %alloc_3 = memref.alloc() : memref<1x4x4x256xi8>
    "mtir.conv2d-fix"(%alloc_2, %alloc_0, %alloc_1, %alloc_3) {dilation = [1 : i32, 1 : i32], group = 1 : i32, hsigmoid_in = -128 : i32, kernel = [2 : i32, 2 : i32], nonlinear = "NONE", op_name = "conv0", pad = [0 : i32, 0 : i32, 0 : i32, 0 : i32], pad_mode = "FLOOR", shift_hsigmoid = -128 : i32, shift_hswish = -128 : i32, stride = [2 : i32, 2 : i32]} : (memref<1x8x8x256xi8>, memref<256x2x2x256xi8>, memref<256xi8>, memref<1x4x4x256xi8>) -> ()
    %alloc_4 = memref.alloc() : memref<1x4x4x256xf32>
    "mtir.fix2float"(%alloc_3, %alloc_4) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "conv0_fix", round_mode = "XPU_ROUND"} : (memref<1x4x4x256xi8>, memref<1x4x4x256xf32>) -> ()
    "memtx.copy"(%alloc_4, %arg1) : (memref<1x4x4x256xf32>, memref<1x4x4x256xf32>) -> ()
    return
  }
}

pass如下

struct ConvertTirToMTirPass
    : public impl::ConvertTirToMTirBase<ConvertTirToMTirPass> {
  void runOnOperation() override {
    mlir::func::FuncOp f = getOperation();
    auto &context = getContext();
    ConversionTarget target(context);
    mlir::bufferization::BufferizeTypeConverter typeConverter;
      
    // 设置TirToMTir的legality 和 patterns
    setupTirToMTirLegality(typeConverter, target);
    RewritePatternSet patterns(&context);
    populateTirToMTirPatterns(typeConverter, patterns);

    // 使用在target上定义的合法性pattern做conversion转换
    if (failed(applyFullConversion(f, target, std::move(patterns)))) {
      signalPassFailure();
    }
    // 设置finalize的legality和patterns
    RewritePatternSet finalizePatterns(&context);
    ConversionTarget finalizeTarget(context);
    finalizeTarget.markUnknownOpDynamicallyLegal(
        [&](Operation *op) { return typeConverter.isLegal(op); });
    populateEliminateBufferizeMaterializationsPatterns(typeConverter,
                                                       finalizePatterns);
    // 使用在target上定义的合法性pattern做conversion转换
    if (failed(applyFullConversion(f, finalizeTarget,
                                   std::move(finalizePatterns)))) {
      signalPassFailure();
    }
  }
};

} // end anonymous namespace

std::unique_ptr<mlir::OperationPass<mlir::func::FuncOp>>
mxir::createConvertTirToMTirPass() {
  return std::make_unique<ConvertTirToMTirPass>();
}

下面来看具体的Legality和pattern

//添加和标记合法和非法的方言,在convert的时候应用
void xcompiler::mxir::setupTirToMTirLegality(
    mlir::bufferization::BufferizeTypeConverter &typeConverter,
    ConversionTarget &target) {
  target.addLegalDialect<memref::MemRefDialect>();
  target.addLegalDialect<mtir::MTIRDialect>();
  target.addLegalDialect<memtx::MemTxDialect>();
  target.addLegalDialect<AffineDialect, arith::ArithDialect>();
  target.addLegalOp<mlir::func::ReturnOp, mlir::func::FuncOp>();
  target.addIllegalDialect<tir::TirDialect>();
  //virtual buffer
  mlir::bufferization::populateBufferizeMaterializationLegality(target);
}

void xcompiler::mxir::populateTirToMTirPatterns(
    mlir::bufferization::BufferizeTypeConverter &typeConverter,
    RewritePatternSet &patterns) {
  auto *context = patterns.getContext();
  typeConverter.addConversion(
      [](RankedTensorType type) -> Optional<Type> { return llvm::None; });
  //不支持tensorType
  typeConverter.addArgumentMaterialization(
      [](OpBuilder &builder, TensorType type, ValueRange inputs,
         Location loc) -> Optional<Value> {
        if (type.getRank() == 0) { //标量直接返回第一个输入
          return inputs[0]; 
        }
        return llvm::None;
      });
  //主要应用了四个pattern
  patterns.add<ConstOpConverter, UpLoadOpConverter, DownLoadOpConverter,
               TirOpConverter>(typeConverter, context);
}

四个pattern

//alloc op 
//为给定的op创建一个内存分配操作memref::AllocOp
static memref::AllocOp createAllocForOp(Operation *op, MemRefType type,
                                        OpBuilder &builder) {
  auto alloc = builder.create<memref::AllocOp>(op->getLoc(), type);
  if (auto attr = op->getAttrOfType<IntegerAttr>("id")) {
    auto baseName = op->getName().stripDialect().str();
    //分配name alloc_0 alloc_1 ...
    std::string bufferName =
        baseName + "." + std::to_string(attr.getInt()) + ".out";
    alloc->setAttr("name", builder.getStringAttr(bufferName));
  }
  return alloc;
}
//这个pattern是将 memtx::ConstOp 操作转换为 arith::ConstantOp 操作
struct ConstOpConverter : public OpConversionPattern<memtx::ConstOp> {
  using OpConversionPattern<memtx::ConstOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memtx::ConstOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    auto type = op.getType();
    auto denseAttr = op.getValue().cast<mlir::DenseElementsAttr>();
    rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, denseAttr);
    return success();
  }
};
//创建一个新的memref::AllocOp,然后使用memtx::CopyOp将
//原始op memref中的数据复制到新分配的memref中,并最终将原始op替换为新分配的memref
struct UpLoadOpConverter : public OpConversionPattern<UpLoadOp> {
  using OpConversionPattern<UpLoadOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(UpLoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    auto type = op.getMem().getType().dyn_cast<MemRefType>();
    auto typeAlloc = MemRefType::get(type.getShape(), type.getElementType());
    auto alloc = rewriter.create<memref::AllocOp>(op.getLoc(), typeAlloc);
    auto a = rewriter.create<memtx::CopyOp>(op.getLoc(), op.getMem(),
                                            alloc.getMemref());
    rewriter.replaceOp(op, alloc.getMemref());
    return success();
  }
};
//将DownLoadOp转换为memtx::CopyOp
struct DownLoadOpConverter : public OpConversionPattern<DownLoadOp> {
  using OpConversionPattern<DownLoadOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(DownLoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    rewriter.replaceOpWithNewOp<memtx::CopyOp>(op, adaptor.getTensor(),
                                               adaptor.getMem());
    return success();
  }
};
//将tir.op转为mtir.op
//如tir.conv2d-fix->mtir.conv2d-fix
class TirOpConverter : public OpInterfaceConversionPattern<TirOpInterface> {
public:
  using OpInterfaceConversionPattern<
      TirOpInterface>::OpInterfaceConversionPattern;

  LogicalResult
  matchAndRewrite(TirOpInterface op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    Location loc = op.getLoc();
    auto tensorType = op->getResult(0).getType().cast<RankedTensorType>();
    auto memrefType =
        getTypeConverter()->convertType(tensorType).cast<MemRefType>();

    SmallVector<Value, 4> bufferOprs(operands.begin(), operands.end());

    Value output;
    auto baseName = op->getName().stripDialect().str();
    
    if (!output) {
      output = createAllocForOp(op, memrefType, rewriter).getMemref();
    }
    bufferOprs.push_back(output);

    auto opName = "mtir." + baseName;
    auto *ctx = getContext();
    //根据op的type和attr创建新的op,并使用rewriter执行op的替换和插入
    if (RegisteredOperationName::lookup(opName, ctx)) {
      rewriter.insert(Operation::create(loc, OperationName(opName, ctx), {},
                                        bufferOprs, op->getAttrDictionary()));
    } else {
      llvm::errs() << "Op not supported in tir to txir conversion";
    }

    rewriter.replaceOp(op, output);
    return success();
  }
};

MTIR ODS自定义Op .td写法示例

def MTIR_Conv2dFixOp :
    MTIR_Op<"conv2d-fix", []> {
  let summary = "2D Convolution Fix Operator";
  let description = [{
    Performs a 2D convolution-fix over the given tensor input, using the weight
    tensor.
  }];

  let arguments = (ins
    MTIR_MemRef:$input,
    MTIR_MemRef:$weight,
    Optional<MTIR_MemRef>:$bias,
    MTIR_MemRef:$output,

    I32ArrayAttr:$kernel,
    I32ArrayAttr:$stride,
    OptionalAttr<I32ArrayAttr>:$dilation,
    OptionalAttr<StrAttr>:$pad_mode,
    OptionalAttr<I32ArrayAttr>:$pad,
    OptionalAttr<StrAttr>:$nonlinear,
    OptionalAttr<I32Attr>:$hsigmoid_in,
    OptionalAttr<I32Attr>:$shift_hsigmoid,
    OptionalAttr<I32Attr>:$shift_hswish,
    OptionalAttr<I32Attr>:$group
  );
}
...
...

总结:通过上面两步pass即得到了自定义TIR->MTIR的bufferization化

module {
  func.func @XPUFunc(%arg0: memref<1x8x8x256xf32>, %arg1: memref<1x4x4x256xf32>) attributes {input_names = ["data0"], input_num = 1 : i64, output_names = ["conv0_fix"]} {
    %alloc = memref.alloc() : memref<1x8x8x256xf32>
    "memtx.copy"(%arg0, %alloc) : (memref<1x8x8x256xf32>, memref<1x8x8x256xf32>) -> ()
    %0 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256x2x2x256xi8>} : () -> memref<256x2x2x256xi8>
    %alloc_0 = memref.alloc() : memref<256x2x2x256xi8>
    "memtx.copy"(%0, %alloc_0) : (memref<256x2x2x256xi8>, memref<256x2x2x256xi8>) -> ()
    %1 = "memtx.const"() {value = dense_resource<__elided__> : tensor<256xi8>} : () -> memref<256xi8>
    %alloc_1 = memref.alloc() : memref<256xi8>
    "memtx.copy"(%1, %alloc_1) : (memref<256xi8>, memref<256xi8>) -> ()
    %alloc_2 = memref.alloc() : memref<1x8x8x256xi8>
    "mtir.float2fix"(%alloc, %alloc_2) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "data0_fix", round_mode = "XPU_ROUND"} : (memref<1x8x8x256xf32>, memref<1x8x8x256xi8>) -> ()
    %alloc_3 = memref.alloc() : memref<1x4x4x256xi8>
    "mtir.conv2d-fix"(%alloc_2, %alloc_0, %alloc_1, %alloc_3) {dilation = [1 : i32, 1 : i32], group = 1 : i32, hsigmoid_in = -128 : i32, kernel = [2 : i32, 2 : i32], nonlinear = "NONE", op_name = "conv0", pad = [0 : i32, 0 : i32, 0 : i32, 0 : i32], pad_mode = "FLOOR", shift_hsigmoid = -128 : i32, shift_hswish = -128 : i32, stride = [2 : i32, 2 : i32]} : (memref<1x8x8x256xi8>, memref<256x2x2x256xi8>, memref<256xi8>, memref<1x4x4x256xi8>) -> ()
    %alloc_4 = memref.alloc() : memref<1x4x4x256xf32>
    "mtir.fix2float"(%alloc_3, %alloc_4) {bit_width = 8 : i32, fix_point = 0 : i32, if_signed = true, op_name = "conv0_fix", round_mode = "XPU_ROUND"} : (memref<1x4x4x256xi8>, memref<1x4x4x256xf32>) -> ()
    "memtx.copy"(%alloc_4, %arg1) : (memref<1x4x4x256xf32>, memref<1x4x4x256xf32>) -> ()
    return
  }
}
作者:mystery
来源:GiantPandaCV

推荐阅读

欢迎大家点赞留言,更多Arm技术文章动态请关注极术社区嵌入式AI专栏欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
18801
内容数
1347
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息