vesperW · 1月9日

巧用设计模式到嵌入式软件中

1、嵌入式

嵌入式的标签多为:低配,偏硬件,底层,资源紧张,代码多以 C 语言,汇编为主,代码应用逻辑简单。

但随着 AIOT 时代的到来,局面组件改变。芯片的性能资源逐渐提升,业务逻辑也逐渐变得复杂,相对于代码的效率而言,代码的复用可移植性要求越来越高,以获得更短的项目周期 和更高的可维护性。

下面是 AIOT 时代嵌入式设备的常见的软件框架。

image.png

设计模式

设计模式的标签:高级语言 ,高端,架构等。在 AIOT 时代,设计模式与嵌入式能擦出怎样的火花?设计模式可描述为:对于某类相似的问题,经过前人的不断尝试,总结出了处理此类问题的公认的有效解决办法。

嵌入式主要以 C 语言开发,且面向过程,而设计模式常见于高级语言(面向对象),目前市面上描述设计模式的书籍多数使用 JAVA 语言,C 语言能实现设计模式吗?

设计模式与语言无关,它是解决问题的方法,JAVA 可以实现,C 语言同样可以实现。同样的,JAVA 程序员会遇到需要用模式来处理的问题,C 程序员也可能遇见,因此设计模式是很有必要学习的。

模式陷阱:设计模式是针对具体的某些类问题的有效解决办法,不是所有的问题都能匹配到对应的设计模式。

因此,不能一味的追求设计模式,有时候简单直接的处理反而更有效。有的问题没有合适的模式,可以尽量满足一些设计原则,如开闭原则(对扩展开放,对修改关闭)

2、观察者模式   

在对象之间定义一个一对多的依赖,当一个对象状态改变的时候,所有依赖的对象都会自动收到通知。

Image

实现

主题对象提供统一的注册接口,以及注册函数 。由观察者本身实例化 observer_intf 接口,然后使用注册函数,添加到对应的主题列表中,主题状态发生改变,依次通知列表中的所有对象。

 struct observer_ops
 {
     void*(handle)(uint8_t evt);  
 };
 struct observer_intf
 {
     struct observer_intf* next;
     const char* name;
     void* condition;
     const struct observer_ops *ops;
 }
 int observer_register(struct topical* top , struct observer_intf* observer);

当主题状态发生改变,将通知到所有观察者,观察者本身也可以设置条件,是否选择接收通知。

 struct observer_intf observer_list;
     
 void XXXX_topical_evt(uint8_t evt)
 {
      struct observer_intf* cur_observer = observer_list.next;
      uint8_t* condition = NULL;
      while(cur_observer != NULL)
      {
          condition = (uint8_t*)cur_observer->condition;
          if(NULL == condition || (condition && *condition))
          {
              if(cur_observer->ops->handle){
                  cur_observer->ops->handle(evt);
              }       
          }
          cur_observer = cur_observer->next;
      }
 }

实例:嵌入式裸机低功耗框架

  • 设备功耗分布

Image

其中线路损耗,电源电路等软件无法控制,故不讨论。板载外设,如传感器可能通过某条命令配置进入低功耗模式,又或者硬件上支持控制外设电源来控制功耗。

片内外设,及芯片内部的外设,通过卸载相关驱动,关闭时钟配置工作模式来控制功耗。

  • 设备唤醒方式

    当系统某个定时事件到来时,系统被主动唤醒处理事件

    系统处于睡眠,被外部事件唤醒,如串口接收到一包数据,传感器检测到变化,通过引脚通知芯片

    被动唤醒
    主动唤醒

  • 系统允许睡眠的条件

    外设无正在收发的数据
    缓存无需要处理的数据
    应用层状态处于空闲(无需要处理的事件)

  • 基于观察者模式的 PM 框架实现

PM 组件提供的接口

struct pm
{
    struct pm* next;
    const char* name;
   void(*init)(void);
    void(*deinit(void);
    void* condition;
};
static struct pm pm_list;
static uint8_t pm_num;
static uint8_t pm_status;
         
int pm_register(const struct pm* pm , const char* name)
{
     struct pm* cur_pm =  &pm_list;
     while(cur_pm->next)
     {
         cur_pm = cur_pm->next;
     }
     cur_pm->next = pm;
     pm->next = NULL;
     pm->name = name;
     pm_num++;
}
 
void pm_loop(void)
{
    uint32_t pm_condition = 0;
    struct pm* cur_pm =  pm_list.next;
    static uint8_t cnt;
    
    /*check all condition*/
    while(cur_pm)
    {
        if(cur_pm->condition){
         pm_condition |=  *((uint32_t*)(cur_pm->condition));
        }
        cur_pm = cur_pm->next;
    }
    if(pm_condition == 0)
    {
      cnt++;
        if(cnt>=5)
        {
            pm_status = READY_SLEEP;
        }
    }
    else
    {
        cnt = 0;
    }
    if( pm_status == READY_SLEEP)
    {
         cur_pm =  pm_list.next;
         while(cur_pm)
         {
             if(cur_pm->deinit){
                cur_pm->deinit();
             }
             cur_pm = cur_pm->next;
         }
        pm_status = SLEEP;
        ENTER_SLEEP_MODE();
    }   
    /*sleep--->wakeup*/
    if(pm_status == SLEEP)
    {
         pm_status = NORMAL;
         cur_pm =  pm_list.next;
         while(cur_pm)
         {
             if(cur_pm->init){
                cur_pm->init();
             }
             cur_pm = cur_pm->next;
         }
    }
}

外设使用 PM 接口

struct uart_dev
{
 ...
 struct pm pm;
    uint32_t pm_condition; 
};
struct uart_dev uart1;
 
void hal_uart1_init(void);
void hal_uart1_deinit(void);
    
void uart_init(void)
{
    uart1.pm.init =  hal_uart1_init;
    uart1.pm.deinit =  hal_uart1_deinit;
    uart1.pm.condition = &uart1.pm_condition;
    pm_register(&uart1.pm , "uart1");
}
/*接下来串口驱动检查缓存 , 发送 , 接收是否空闲或者忙碌 , 给uart1.pm_condition赋值*/

结论

  • PM 电源管理可以单独形成模块,当功耗外设增加时,只需实现接口,注册即可
  • 通过定义段导出操作,可以更加简化应用层或外设的注册逻辑
  • 方便调试,可以很方便打印出系统当前为满足睡眠条件的模块
  • 通过条件字段划分,应该可以实现系统部分睡眠

3、责任链模式  

在现实生活中,一个事件(任务)需要经过多个对象处理是很常见的场景。

如报销流程,公司员工报销, 首先员工整理报销单,核对报销金额,有误则继续核对整理,直到无误,将报销单递交到财务,财务部门进行核对,核对无误后,判断金额数量,若小于一定金额,则财务部门可直接审批,若金额超过范围,则报销单流传到总经理,得到批准后,整个任务才算结束。

类似的情景还有很多,如配置一个 WIFI 模块,通过 AT 指令,要想模块正确连入 WIFI , 需要按一定的顺序依次发送配置指令 , 如设置设置模式 ,设置 需要连接的 WIFI 名,密码,每发送一条配置指令,模块都将返回配置结果,而发送者需要判断结果的正确性,再选择是否发送下一条指令或者进行重传。

总结起来是,一系列任务需要严格按照时间线依次处理的顺序逻辑,如下图所示:

Image

在存在系统的情况下,此类逻辑可以很容易的用阻塞延时来实现,实现如下:

void process_task(void)
{
    task1_process();
    msleep(1000);
    
    task2_process();
    mq_recv(&param , 1000);
    
    task3_process();
    while(mq_recv(&param , 1000) != OK)
    {
        if(retry)
        {
             task3_process();
             --try;
        }
    }
}

在裸机的情况下,为了保证系统的实时性,无法使用阻塞延时,一般使用定时事件配合状态机来实现:

void process_task(void)
{
     switch(task_state)
     {
         case task1:
             task1_process();
             set_timeout(1000);break;
         case task2:
             task1_process();
             set_timeout(1000);break;
         case task3:
             task1_process();
             set_timeout(1000)break;
         default:break;
     }
}
/*定时器超时回调*/
void timeout_cb(void)
{
    if(task_state == task1)
    {
        task_state = task2;
        process_task();
    }
    else  //task2 and task3
    {
        if(retry)
        {
            retry--;
             process_task();
        }
    }
}
/*任务的应答回调*/
void task_ans_cb(void* param)
{
    if(task==task2)
    {
        task_state = task3;
        process_task();
    }
}

与系统实现相比,裸机的实现更加复杂,为了避免阻塞,只能通过状态和定时器来实现顺序延时的逻辑。

可以看到,实现过程相当分散,对于单个任务的处理分散到了 3 个函数中处理,这样导致的后果是:修改、移植的不便。

而实际的应用中,类似的逻辑相当多,如果按照上面的方法去实现,将会导致应用程序的强耦合。

实现

可以发现,上面的情景有以下特点:

  • 任务按顺序执行,只有当前任务执行完了(有结论,成功或者失败)才允许执行下一个任务
  • 前一个任务的执行结果会影响到下一个任务的执行情况
  • 任务有一些特性,如超时时间,延时时间,重试次数

通过以上信息,我们可以抽象出这样一个模型:任务作为节点;  每一个任务节点有其属性:如超时,延时,重试,参数,处理方法,执行结果。

当需要按照顺序执行一系列任务时,依次将任务节点串成一条链,启动链运行,则从任务链的第一个节点开始运行,运行的结果可以是 OK , BUSY ,ERROR 。

若是 OK, 表示节点已处理,从任务链中删除,ERROR 表示运行出错,任务链将停止运行,进行错误回调,可以有用户决定是否继续运行下去。

BUSY 表示任务链处于等待应答,或者等待延时的情况。当整条任务链上的节点都执行完,进行成功回调。

Image

node 数据结构定义

/*shadow node api type for req_chain src*/
typedef struct shadow_resp_chain_node
{
 uint16_t timeout;
 uint16_t duration;
 uint8_t init_retry;
 uint8_t param_type;
 uint16_t retry;
 /*used in mpool*/
   struct shadow_resp_chain_node* mp_prev;
 struct shadow_resp_chain_node* mp_next;
 
    /*used resp_chain*/
 struct shadow_resp_chain_node* next;
 
 node_resp_handle_fp handle;
 void* param;
}shadow_resp_chain_node_t;

node 内存池

使用内存池的必要性:实际情况下,同一时间,责任链的条数,以及单条链的节点数比较有限,但种类是相当多的。

比如一个支持 AT 指令的模块,可能支持几十条 AT 指令,但执行一个配置操作,可能就只会使用 3-5 条指令,若全部静态定义节点,将会消耗大量内存资源。因此动态分配是必要的。

Image

初始化 node 内存池,内存池内所有节点都将添加到 free_list。当申请节点时,会取出第一个空闲节点,加入到 used_list , 并且接入到责任链。当责任链某一个节点执行完,将会被自动回收(从责任链中删除,并从 used_list 中删除,然后添加到 free_list)

职责链数据结构定义

typedef struct resp_chain
{
   bool enable;           //enble == true 责任链启动 
   bool  is_ans;          //收到应答,与void* param 共同组成应答信号
 
 uint8_t state;            
 const char* name;
 void* param;
 TimerEvent_t timer;
 bool timer_is_running;
 shadow_resp_chain_node_t node;        //节点链
 void(*resp_done)(void* result);       //执行结果回调
}resp_chain_t;

职责链初始化

void resp_chain_init(resp_chain_t* chain ,  const char* name , 
                                            void(*callback)(void* result))
   RESP_ASSERT(chain);
 /*only init one time*/
 resp_chain_mpool_init();
 
   chain->enable = false;
 chain->is_ans = false;
 chain->resp_done = callback;
 chain->name = name;
 
 chain->state = RESP_STATUS_IDLE;
 chain->node.next = NULL;
 chain->param = NULL;
 
 TimerInit(&chain->timer,NULL);
}

职责链添加节点

int resp_chain_node_add(resp_chain_t* chain , 
                        node_resp_handle_fp handle , void* param)
{
   RESP_ASSERT(chain);
 BoardDisableIrq();  
 shadow_resp_chain_node_t* node = chain_node_malloc();
 if(node == NULL)
 {
    BoardEnableIrq();
    RESP_LOG("node malloc error ,no free node");
  return -2;
 }
 /*初始化节点,并加入责任链*/
 shadow_resp_chain_node_t* l = &chain->node;
 while(l->next != NULL)
 {
  l = l->next;
 }
 l->next = node;
 node->next = NULL; 
 node->handle = handle;
 node->param = param;
 node->timeout = RESP_CHIAN_NODE_DEFAULT_TIMEOUT;
 node->duration = RESP_CHIAN_NODE_DEFAULT_DURATION;
 node->init_retry = RESP_CHIAN_NODE_DEFAULT_RETRY;
 node->retry = (node->init_retry == 0)? 0 :(node->init_retry-1);
 BoardEnableIrq();
 return 0;
}

职责链的启动

void resp_chain_start(resp_chain_t* chain)
{
   RESP_ASSERT(chain);
 chain->enable = true;
}

职责链的应答

void resp_chain_set_ans(resp_chain_t* chain , void* param)
{
 RESP_ASSERT(chain);
   if(chain->enable)
 {
  chain->is_ans = true;
  if(param != NULL)
     chain->param = param;
  else
  {
   chain->param = "NO PARAM";
  }
 }
}

职责链的运行

int resp_chain_run(resp_chain_t* chain)
{ 
 RESP_ASSERT(chain);
 if(chain->enable)
 {
    shadow_resp_chain_node_t* cur_node = chain->node.next;
    /*maybe ans occur in handle,so cannot change state direct when ans comming*/
    if(chain->is_ans)
  {
   chain->is_ans = false;
   chain->state = RESP_STATUS_ANS;
  }  
   
  switch(chain->state)
  {
   case RESP_STATUS_IDLE:
   {
    if(cur_node)
    {
       uint16_t retry = cur_node->init_retry;
     if(cur_node->handle)
     {
        cur_node->param_type = RESP_PARAM_INPUT;
      chain->state = cur_node->handle((resp_chain_node_t*)cur_node                                                               ,cur_node->param);
     }
     else
     {
         RESP_LOG("node handle is null ,goto next node");
      chain->state = RESP_STATUS_OK;
     }
     if(retry != cur_node->init_retry)
     {
      cur_node->retry = cur_node->init_retry>0?(cur_node-                                                      >init_retry-1):0;                       
     }
    }
    else
    {
       if(chain->resp_done)
     {
      chain->resp_done((void*)RESP_RESULT_OK);
     }
     chain->enable = 0;
     chain->state = RESP_STATUS_IDLE;
     TimerStop(&chain->timer);
     chain->timer_is_running  = false;
    }
    break;
   }
   case RESP_STATUS_DELAY:
   {
    if(chain->timer_is_running == false)
    {
       chain->timer_is_running  = true;
     TimerSetValueStart(&chain->timer , cur_node->duration);
    }
    if(TimerGetFlag(&chain->timer) == true)
    {
     chain->state = RESP_STATUS_OK;
     chain->timer_is_running  = false;
    }
     break; 
   }
   case RESP_STATUS_BUSY:
   {
      /*waiting for ans or timeout*/
      if(chain->timer_is_running == false)
    {
       chain->timer_is_running  = true;
     TimerSetValueStart(&chain->timer , cur_node->timeout);
    }
    if(TimerGetFlag(&chain->timer) == true)
    {
     chain->state = RESP_STATUS_TIMEOUT;
     chain->timer_is_running  = false;
    }
    break;
      }
   case RESP_STATUS_ANS:
     {
      /*already got the ans,put the param back to the request handle*/
      TimerStop(&chain->timer);
    chain->timer_is_running  = false;
    if(cur_node->handle)
    {
     cur_node->param_type = RESP_PARAM_ANS;
     chain->state = cur_node->handle((resp_chain_node_t*)cur_node ,                                                                 chain->param);
    }
    else
    {
     RESP_LOG("node handle is null ,goto next node");
     chain->state = RESP_STATUS_OK;
    }
    break;
   }
   case RESP_STATUS_TIMEOUT:
   {
    if(cur_node->retry)
    {
     cur_node->retry--; 
     /*retry to request until cnt is 0*/
     chain->state = RESP_STATUS_IDLE;
    }
    else
    {
     chain->state = RESP_STATUS_ERROR;
    }
    break;
   }
   case RESP_STATUS_ERROR:
   {
      if(chain->resp_done)
    {
       chain->resp_done((void*)RESP_RESULT_ERROR);
    }
    chain->enable = 0;
    chain->state = RESP_STATUS_IDLE;
    TimerStop(&chain->timer);
    chain->timer_is_running  = false;
    cur_node->retry = cur_node->init_retry>0?(cur_node->init_retry-1):0;
    chain_node_free_all(chain);
    break;
   }
   case RESP_STATUS_OK:
   {
      /*get the next node*/
      cur_node->retry = cur_node->init_retry>0?(cur_node->init_retry-1):0;
    chain_node_free(cur_node);
    chain->node.next = chain->node.next->next;
    chain->state = RESP_STATUS_IDLE;
    break;
   }
      default:
     break;
  }
 }
 return chain->enable;
}

测试用例

  • 定义并初始化责任链
void chain_test_init(void)
{
    resp_chain_init(&test_req_chain , "test request" , test_req_callback);
}
  • 定义运行函数,在主循环中调用
void chain_test_run(void)
{
    resp_chain_run(&test_req_chain);
}
  • 测试节点添加并启动触发函数
void chain_test_tigger(void)
{
    resp_chain_node_add(&test_req_chain ,  node1_req ,NULL);
    resp_chain_node_add(&test_req_chain ,  node2_req,NULL);
    resp_chain_node_add(&test_req_chain ,  node3_req,NULL);
    resp_chain_start(&test_req_chain);
}
  • 分别实现节点请求函数
 /*延时1s 后执行下一个节点*/
 int node1_req(resp_chain_node_t* cfg, void* param)
 {
     cfg->duration = 1000;
     RESP_LOG("node1 send direct request: delay :%d ms" , cfg->duration);
     return RESP_STATUS_DELAY;
 }
 /*超时时间1S , 重传次数5次*/ 
 int node2_req(resp_chain_node_t* cfg , void* param)
 {
     static uint8_t cnt;
     if(param == NULL)
     {
         cfg->init_retry = 5;
         cfg->timeout  = 1000;
         RESP_LOG("node2 send request max retry:%d , waiting for ans...");
         return RESP_STATUS_BUSY;
     }
     RESP_LOG("node2 get ans: %d",(int)param);
     return RESP_STATUS_OK;
 }
 /*非异步请求*/  
 int node3_req(resp_chain_node_t* cfg , void* param)
 {
     RESP_LOG("node4 send direct request");
     return RESP_STATUS_OK;
 }
 
 void ans_callback(void* param)
 {
     resp_chain_set_ans(&test_req_chain , param);
 }

结论

  • 实现了裸机处理 顺序延时任务
  • 较大程度的简化了应用程的实现,用户只需要实现响应的处理函数 , 调用接口添加,即可按时间要求执行
  • 参数为空,表明为请求 ,否则为应答。(在某些场合,请求可能也带参数,如接下来所说的 LAP 协议,此时需要通过判断参数的类型)

设计模式参考

Head First 设计模式(中文版)

人人都懂设计模式:从生活中领悟设计模式:Python 实现

设计模式之禅

设计模式的 C 语言应用.https://bbs.huaweicloud.com/blogs/113179

适配器模式

原文:https://blog.csdn.net/qq_36969440/article/details/118189387

END

作者:小麦大叔
来源:小麦大叔

推荐阅读

欢迎大家点赞留言,更多 Arm 技术文章动态请关注极术社区嵌入式客栈专栏欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
2896
内容数
302
分享一些在嵌入式应用开发方面的浅见,广交朋友
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息