DeerFlow(Deep Exploration and Efficient Research Flow)是一个社区驱动的深度研究框架,它建立在开源社区的杰出工作基础之上。目标是将语言模型与专业工具(如网络搜索、爬虫和Python代码执行)相结合.。
随着大语言模型(LLM)和语音合成技术的快速发展,个性化AI代理的实现变得愈发可行。近期,一个名为 WeClone 的开源项目引起了开发者社区的关注。该项目旨在通过用户的微信聊天记录,训练出一个高度个性化的对话模型,从而实现“数字版的你”,在一定程度上探索“数字永生”的可能性。
AgentScope是通义实验室开源的multi-agent编程框架,专为开发人员设计,提供了丰富的组件, 全面的文档和广泛的兼容性。同时,AgentScope Workstation提供了在线拖拉拽编程和在线小助手(copilot)功能,帮助开发者迅速上手!支持自定义的容错控制和重试机制,以提高应用程序的稳定性,支持以中心化的方式构建分布式多智能体...
1.Qwen3github:[链接]文档:[链接][链接][链接]最新版本Qwen3有以下特点:全尺寸稠密与混合专家模型:0.6B, 1.7B, 4B, 8B, 14B, 32B and 30B-A3B, 235B-A22BModels LayersHeads (Q / KV)Tie EmbeddingContext LengthQwen3-0.6B2816 / 8Yes 32KQwen3-1.7B 2816 / 8Yes 32KQwen3-4B3632 / 8&nbs...
MCP Server(模型上下文协议服务器)是一种基于模型上下文协议(Model Context Protocol,简称 MCP)构建的轻量级服务程序,旨在实现大型语言模型(LLM)与外部资源之间的高效、安全连接。MCP 协议由 Anthropic 公司于 2024 年 11 月开源,其核心目标是解决 AI 应用中数据分散、接口不统一等问题,为开发者提供标准化的...
大多数常用的数据分块方法(chunking)都是基于规则的,采用 fixed chunk size(译者注:将数据或文本按照固定的大小进行数据分块)或 overlap of adjacent chunks(译者注:让相邻的数据块具有重叠内容,确保信息不会丢失。) 等技术。对于具有多个层级结构的文档,可以使用 Langchain 提供的 RecursiveCharacterTextSp...
设想你正致力于构建一个智能问答系统,该系统旨在从庞大的知识库中迅速而精确地提取关键信息,并据此生成自然流畅的回答。然而,随着数据规模的不断扩大,系统面临着严峻的挑战:检索效率逐渐下滑,生成内容的质量亦趋于下降。这正是当前众多检索增强型生成(RAG)系统亟需解决的核心问题——如何在数据冗余、检索效率低下...
Text Embedding 榜单:MTEB、C-MTEB 《MTEB: Massive Text Embedding Benchmark(海量文本嵌入基准)》 判断哪些文本嵌入模型效果较好,通常需要一个评估指标来进行比较,《MTEB: Massive Text Embedding Benchmark(海量文本嵌入基准)》就是一个海量文本嵌入模型的评估基准
[【ChatGLM2-6B 入门】清华大学开源中文版 ChatGLM-6B 模型学习与实战]论文名称:ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型
检索增强生成 (RAG) 是一种强大的技术,它将信息检索与生成式 AI 相结合,以产生更准确、上下文更丰富的响应。本文将探讨 15 种高级 RAG 技术,以提高生成式 AI 系统的输出质量和整体性能的鲁棒性。这样做使本文能够测试和识别从预检索到生成的适当优化,本文所提到的优化点大多数基于下图的流程。
随着生成式人工智能(Artificial Intelligence Generated Content,简写为 AIGC)时代的到来,使用大规模预训练语言模型(LLM)来进行 text2sql 任务的 sql 生成也越来越常见。基于 LLM 的 text2SQL 方法通常分为两种:
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验1.RAGflow简介最近更新:2024-09-13 增加知识库问答搜索模式。2024-09-09 在 Agent 中加入医疗问诊模板。2024-08-22 支持用RAG技术实现从自然语言到SQL语句的转换。2024-08-02 支持 GraphRAG 启发于 graphrag 和思维导图。2024-0...
实际应用中,这两种方案并不是要对立存在的,像永劫无间这种游戏的场景,用户要的是低延迟,无障碍交流。并且能够触发某些动作技能。这就非常适合使用成熟的 ASR 和 TTS 技术来负责音频的处理,而 LLM 就可以专门做用户意图的理解。
标题取自 LLamaIndex,这个内容最早提出于今年 2 月份 LlamaIndex 官方博客。从 22 年 chatGpt 爆火,23 年大模型尝鲜,到 24 年真正用 AI 落地业务场景,业界普遍都发现了从 MVP 到 PMF 不是那么容易的,具体的原因有非常多,在 RAG 场景下,最主要的表现是企业的数据 _“垃圾进,垃圾出”_,如何利用好企业数据是提升 RA...
检索增强生成(RAG)是一种新兴的 AI 技术栈,通过为大型语言模型(LLM)提供额外的 “最新知识” 来增强其能力。
为了引出什么是 RAG,先看一下 LLM 当前存在的问题:幻觉、过时的知识、不透明无法追踪的推理过程
该项目整合了编程、AI、产品设计、商业科技及个人成长等多领域的精华内容,源自顶尖技术企业和社群。借助先进语言模型技术,对精选文章进行高效摘要、专业评分及多语种翻译,实现了从初步评估到深入剖析,再到传播的全面自动化流程。通过引入Workflow平台,该项目显著提升了内容处理的速度与质量,为读者带来更加便捷、...
SearXNG 是一个免费的互联网元搜索引擎,整合了各种搜索服务的结果。用户不会被跟踪,也不会被分析。
无缝融入,即刻智能[二]:Dify-LLM平台(聊天智能助手、AI工作流)快速使用指南,42K+星标见证专属智能方案1.快速创建应用你可以通过 3 种方式在 Dify 的工作室内创建应用:基于应用模板创建(新手推荐)创建一个空白应用通过 DSL 文件(本地 / 在线)创建应用从模板创建应用初次使用 Dify 时,你可能对于应用创建比较陌生...
Xorbits Inference (Xinference) 是一个开源平台,用于简化各种 AI 模型的运行和集成。借助 Xinference,您可以使用任何开源 LLM、嵌入模型和多模态模型在云端或本地环境中运行推理,并创建强大的 AI 应用。通过 Xorbits Inference,可以轻松地一键部署你自己的模型或内置的前沿开源模型