yahei · 2019年08月23日

浅探Winograd量化

上一篇文章《Winograd卷积原理 | Hey~YaHei!》已经介绍过Winograd卷积的基本原理,但终究是理论上的推导,在实际应用的时候其实有些耐人寻味的地方:数学推导假设的是无限的精度和数值范围,但实际计算机的运算精度与数值范围都是有限的,不过按照论文《Fast algorithms for convolutional neural(CVPR2016)》的报告,Winograd在浮点运算上的表现都不错:
VGG_errors.jpg

  • $F(2\times2,3\times3)$的fp32精度损失甚至比Direct Convolution还小,这主要得益于乘法次数的减少,以及简单的变换矩阵(没有非常大或者非常小的数值)
  • $F(4\times4,3\times3)$的fp32精度损失就比较大了,但似乎也还能接受
  • fp16精度损失这三者表现的差不多

浮点运算的Winograd确实不错,但它却似乎也没那么轻易能套上量化——整型可没有浮点这么大的动态范围,如何保证运算过程整型不会溢出将是个令人头疼的问题。

溢出

假设将网络量化成int8,int8的权重和int8的输入,那么得益于int8 * int8,无论是Direct Convolution还是im2col+GEMM,这都能带来可观的加速。但在Winograd里可就不是这么回事了!
注意:im2col也没有对数值的大小进行变换

$F(2,3)$

回顾一下$F(2,3)$的变换矩阵:

$$ B^{T}=\left[\begin{array}{rrrr}{1} & {0} & {-1} & {0} \\ {0} & {1} & {1} & {0} \\ {0} & {-1} & {1} & {0} \\ {0} & {1} & {0} & {-1}\end{array}\right], G=\left[\begin{array}{rrr}{1} & {0} & {0} \\ {\frac{1}{2}} & {\frac{1}{2}} & {\frac{1}{2}} \\ {\frac{1}{2}} & {-\frac{1}{2}} & {\frac{1}{2}} \\ {0} & {0} & {1}\end{array}\right], A^{T}=\left[\begin{array}{rrrr}{1} & {1} & {1} & {0} \\ {0} & {1} & {-1} & {-1}\end{array}\right] $$

$$ g=\left[\begin{array}{lll}{g_{0}} & {g_{1}} & {g_{2}}\end{array}\right]^{T}, d=\left[\begin{array}{llll}{d_{0}} & {d_{1}} & {d_{2}} & {d_{3}}\end{array}\right]^{T} $$

接下来计算一下$U$矩阵和$V$矩阵:

from sympy import Matrix, Symbol

BT = Matrix([
    [1,  0, -1,  0],
    [0,  1,  1,  0],
    [0, -1,  1,  0],
    [0,  1,  0, -1]
])
G = Matrix([
    [2,  0, 0],
    [1,  1, 1],
    [1, -1, 1],
    [0,  0, 2]
])
AT = Matrix([
    [1,  1,  1,  0],
    [0,  1, -1, -1]
])
g = Matrix([[Symbol('g0')], [Symbol('g1')], [Symbol('g2')]])
d = Matrix([[Symbol('d0')], [Symbol('d1')], [Symbol('d2')], [Symbol('d3')]])
m = Matrix([[Symbol('m0')], [Symbol('m1')], [Symbol('m2')], [Symbol('m3')]])
print("G * g:", G * g)
print("BT * d:", BT * d)
print("AT * m:", AT * m)

$$ Gg = \left[\begin{array}{l}{2g_0} & {g_0+g_1+g_2} & {g0-g1+g2} & {2g_2}\end{array}\right]^T \\ B^Td = \left[\begin{array}{l}{d_0-d_2} & {d_1+d_2} & {-d_1+d_2} & {d_1-d_3}\end{array}\right]^T \\ \frac{1}{2} A^Tm = \frac{1}{2} \left[\begin{array}{l}{m_0+m_1+m_2} & {m_1-m_2-m_3}\end{array}\right]^T $$

输入、输出变换过程包含8次加法和2次移位;
同时可以看到,为了保证计算不溢出,$G^d$需要额外的2个bits,而$B^Td$需要额外的1个bit,换言之,为了保证安全的int8 * int8,权重和输入分别得量化到int6和int7。

$F(2\times2,3\times3)$

g = Matrix(3, 3, [Symbol(f'g{i}') for i in range(3*3)])
d = Matrix(4, 4, [Symbol(f'd{i}') for i in range(4*4)])
m = Matrix(4, 4, [Symbol(f'm{i}') for i in range(4*4)])

print("G * g * GT:", G * g * G.T)
>>> Matrix([
... [              4*g0,                         2*g0 + 2*g1 + 2*g2,                         2*g0 - 2*g1 + 2*g2,               4*g2],
... [2*g0 + 2*g3 + 2*g6, g0 + g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8, g0 - g1 + g2 + g3 - g4 + g5 + g6 - g7 + g8, 2*g2 + 2*g5 + 2*g8],
... [2*g0 - 2*g3 + 2*g6, g0 + g1 + g2 - g3 - g4 - g5 + g6 + g7 + g8, g0 - g1 + g2 - g3 + g4 - g5 + g6 - g7 + g8, 2*g2 - 2*g5 + 2*g8],
... [              4*g6,                         2*g6 + 2*g7 + 2*g8,                         2*g6 - 2*g7 + 2*g8,               4*g8]])

print("BT * d * B:", BT * d * BT.T)
>>> Matrix([
... [  d0 + d10 - d2 - d8,   d1 - d10 + d2 - d9, -d1 - d10 + d2 + d9,   d1 + d11 - d3 - d9],
... [ -d10 + d4 - d6 + d8,   d10 + d5 + d6 + d9,  d10 - d5 + d6 - d9,  -d11 + d5 - d7 + d9],
... [ -d10 - d4 + d6 + d8,   d10 - d5 - d6 + d9,  d10 + d5 - d6 - d9,  -d11 - d5 + d7 + d9],
... [-d12 + d14 + d4 - d6, -d13 - d14 + d5 + d6, d13 - d14 - d5 + d6, -d13 + d15 + d5 - d7]])

print("AT * m * A:", AT * m * AT.T)
>>> Matrix([
... [    m0 + m1 + m10 + m2 + m4 + m5 + m6 + m8 + m9,    m1 - m10 - m11 - m2 - m3 + m5 - m6 - m7 + m9],
... [-m10 - m12 - m13 - m14 + m4 + m5 + m6 - m8 - m9, m10 + m11 - m13 + m14 + m15 + m5 - m6 - m7 - m9]])

输出矩阵的各元素系数绝对值之和$\mu(\cdot)$:

$$ \mu(GgG^T) = \left[\begin{array}{llll} {4} & {6} & {6} & {4} \\ {6} & {9} & {9} & {6} \\ {6} & {9} & {9} & {6} \\ {4} & {6} & {6} & {4} \end{array}\right], \mu(B^TdB) = \left[\begin{array}{llll} {4} & {4} & {4} & {4} \\ {4} & {4} & {4} & {4} \\ {4} & {4} & {4} & {4} \\ {4} & {4} & {4} & {4} \end{array}\right] $$

输入、输出变换过程包含80次加法和4次移位($\frac{1}{4}A^TmA$);
同时可以看到,为了保证计算不溢出,$G^d$需要额外的4个bits,而$B^Td$需要额外的2个bit,换言之,为了保证安全的int8 * int8,权重和输入分别得量化到int4和int6。

$F(4\times4,3\times3)$

def max_l1_coeff(sym_matrix):
    max_ = 0
    for elem in sym_matrix:
        d = elem.as_coefficients_dict()
        l1_coeff = sum([abs(v) for v in d.values()])
        if l1_coeff > max_:
            max_ = l1_coeff
    return max_

BT = Matrix([
    [4,  0, -5,  0, 1, 0],
    [0, -4, -4,  1, 1, 0],
    [0,  4, -4, -1, 1, 0],
    [0, -2, -1,  2, 1, 0],
    [0,  2, -1, -2, 1, 0],
    [0,  4,  0, -5, 0, 1]
])
G = Matrix([
    [ 6,  0,  0],
    [-4, -4, -4],
    [-4,  4, -4],
    [ 1,  2,  4],
    [ 1, -2,  4],
    [ 0,  0, 24]
])
AT = Matrix([
    [1, 1,  1, 1,  1, 0],
    [0, 1, -1, 2, -2, 0],
    [0, 1,  1, 4,  4, 0],
    [0, 1, -1, 8, -8, 1]
])
g = Matrix(3, 3, [Symbol(f'g{i}') for i in range(3*3)])
d = Matrix(6, 6, [Symbol(f'd{i}') for i in range(6*6)])
m = Matrix(6, 6, [Symbol(f'm{i}') for i in range(6*6)])

print(max_l1_coeff(G * g * G.T))     # Output: 576
print(max_l1_coeff(BT * d * BT.T))   # Output: 100
print(max_l1_coeff(AT * m * AT.T))   # Output: 361

为了保证计算不溢出,$G^d$需要额外的10个bits,而$B^Td$需要额外的7个bit,换言之……压根没法保证int8 * int8的安全计算。这时候可能只能将int8扩展到int16,执行int16 * int16的乘法运算,即便如此,权重也只能量化到int6.

更快的变换

上一篇文章我们已经提到过——

尽管$V = B^{T} d B$和$Y = A^T M A$的计算过程中也有大量的乘法,但观察可以发现$F(4,3)$和$F(6,3)$的$A^T$矩阵和$B^T$中有相当多的元素恰好是$2^n$,也就是说,用Winograd计算量化的卷积应该会有神奇的加成

现在我们来看看具体有哪些神奇的变化:

from math import log2
def _op_count(sym_matrix):
    adds, shifts, muls = 0, 0, 0
    abs_v_pool = []
    for elem in sym_matrix:
        d = elem.as_coefficients_dict()
        adds += len(d) - 1
        for v in d.values():
            abs_v = abs(v)
            if abs_v != 1 and abs_v not in abs_v_pool:
                abs_v_pool.append(abs_v)
                log = log2(abs_v)
                if log == int(log):
                    shifts += 1
                else:
                    muls += 1
    return {"adds": adds, "shifts": shifts, "muls": muls}
def op_count_1D(M1, M2):
    return _op_count(M1 * M2)
def op_count_2D(M1, M2):
    t = M1 * M2
    counter1 = _op_count(t)
    M3 = Matrix(*t.shape, [Symbol(f't{i}') for i in range(len(t))])
    counter2 = _op_count(M3 * M1.T)
    return {
        "adds": counter1['adds'] + counter2['adds'],
        "shifts": counter1['shifts'] + counter2['shifts'],
        "muls": counter1['muls'] + counter2['muls'],
    }

print(op_count_1D(G, g))
print(op_count_1D(BT, d))
print(op_count_1D(AT, m))

print(op_count_2D(G, g))
print(op_count_2D(BT, d))
print(op_count_2D(AT, m))

将输入、输出变换过程中的大量乘法替换成移位运算之后,理论上Winograd能变得更快!

Winograd原始乘法Win乘法Win量化乘法理论加速比含变换加速比含变换加速比(量化)
$F(2,3)$64(4)4(4)1.501.501.50
$F(4,3)$1212(6)7(6)2.001.001.71
$F(6,3)$1828(8)13(8)2.250.641.38
堆$F(2\times2,3\times3)$3624(24)24(24)1.501.501.50
堆$F(4\times4,3\times3)$144126(72)78(76)2.001.141.85
堆$F(6\times6,3\times3)$324396(144)184(144)2.250.821.76
嵌$F(2\times2,3\times3)$3616(16)16(16)2.252.252.25
嵌$F(4\times4,3\times3)$14448(36)38(36)4.003.003.79
嵌$F(6\times6,3\times3)$324102(64)74(64)5.063.124.38

原文链接:浅探Winograd量化 | Hey~YaHei!

推荐阅读
关注数
290
内容数
26
计算机视觉相关学习笔记,欢迎关注。[链接]
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息