本文推荐65篇"IJCAI"深度强化学习论文。
报道:深度强化学习实验室
编辑:DeepRL
来源:IJCAI
- A Dual Reinforcement Learning Framework for Unsupervised Text Style Transfer: Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang, Xu Sun, Zhifang Sui
- A Restart-based Rank-1 Evolution Strategy for Reinforcement Learning: Zefeng Chen, Yuren Zhou, Xiao-yu He, Siyu Jiang
- An Actor-Critic-Attention Mechanism for Deep Reinforcement Learning in Multi-view Environments:Elaheh Barati, Xuewen Chen
- An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents: Felipe Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, Joel Lehman
- Automatic Successive Reinforcement Learning with Multiple Auxiliary Rewards: Zhao-Yang Fu, De-Chuan Zhan, Xin-Chun Li, Yi-Xing Lu
- Autoregressive Policies for Continuous Control Deep Reinforcement Learning:Dmytro Korenkevych, Ashique Rupam Mahmood, Gautham Vasan, James Bergstra
- Deep Multi-Agent Reinforcement Learning with Discrete-Continuous Hybrid Action Spaces :Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, Changjie Fan
- Dynamic Electronic Toll Collection via Multi-Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Network Representation:Wei Qiu, Haipeng Chen, Bo An
- Energy-Efficient Slithering Gait Exploration for a Snake-Like Robot Based on Reinforcement Learning: Zhenshan Bing, Christian Lemke, Zhuangyi Jiang, Kai Huang, Alois Knoll
- Explaining Reinforcement Learning to Mere Mortals: An Empirical Study: Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, Margaret Burnett
- Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space: Zhou Fan, Rui Su, Weinan Zhang, Yong Yu
- Incremental Learning of Planning Actions in Model-Based Reinforcement Learning: Alvin Ng, Ron Petrick
- Interactive Reinforcement Learning with Dynamic Reuse of Prior Knowledge from Human/Agent's Demonstration: Zhaodong Wang, Matt Taylor
- Interactive Teaching Algorithms for Inverse Reinforcement Learning: Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, Adish Singla
- Large-Scale Home Energy Management Using Entropy-Based Collective Multiagent Deep Reinforcement Learning: Yaodong Yang, Jianye Hao, Yan Zheng, Chao Yu
- Meta Reinforcement Learning with Task Embedding and Shared Policy: Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang
- Metatrace Actor-Critic: Online Step-Size Tuning by Meta-gradient Descent for Reinforcement Learning Control: Kenny Young, Baoxiang Wang, Matthew E. Taylor
- Playing Card-Based RTS Games with Deep Reinforcement Learning: Tianyu Liu, Zijie Zheng, Hongchang Li, Kaigui Bian, Lingyang Song
- Playing FPS Games With Environment-Aware Hierarchical Reinforcement Learning: Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, Jun Zhu
- Reinforcement Learning Experience Reuse with Policy Residual Representation: WenJi Zhou, Yang Yu, Yingfeng Chen, Kai Guan, Tangjie Lv, Changjie Fan, Zhi-Hua Zhou
- Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation: Yang Gao, Christian Meyer, Mohsen Mesgar, Iryna Gurevych
- Sharing Experience in Multitask Reinforcement Learning: Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong Ta, Quoc-Long Tran, Thanh-Ha Le
- SlateQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets: Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar Chandra, Craig Boutilier
- Soft Policy Gradient Method for Maximum Entropy Deep Reinforcement Learning: Wenjie Shi, Shiji Song, Cheng Wu
- Solving Continual Combinatorial Selection via Deep Reinforcement Learning: HyungSeok Song, Hyeryung Jang, Hai H. Tran, Se-eun Yoon, Kyunghwan Son, Donggyu Yun, Hyoju Chung, Yung Yi
- Successor Options: An Option Discovery Framework for Reinforcement Learning: Rahul Ramesh, Manan Tomar, Balaraman Ravindran
- Transfer of Temporal Logic Formulas in Reinforcement Learning: Zhe Xu, Ufuk Topcu
- Using Natural Language for Reward Shaping in Reinforcement Learning: Prasoon Goyal, Scott Niekum, Raymond Mooney
- Value Function Transfer for Deep Multi-Agent Reinforcement Learning Based on N-Step Returns: Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, Changjie Fan
- Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving: Akifumi Wachi
- LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning: Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, Sheila McIlraith
- A Survey of Reinforcement Learning Informed by Natural Language: Jelena Luketina↵, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstett, Shimon Whiteson, Tim Rocktäschel
- Leveraging Human Guidance for Deep Reinforcement Learning Tasks: Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H. Ballard, Peter Stone
- CRSRL: Customer Routing System using Reinforcement Learning: Chong Long, Zining Liu, Xiaolu Lu, Zehong Hu, Yafang Wang
- Deep Reinforcement Learning for Ride-sharing Dispatching and Repositioning: Zhiwei (Tony) Qin, Xiaocheng Tang, Yan Jiao, Fan Zhang, Chenxi Wang
- Learning Deep Decentralized Policy Network by Collective Rewards for Real-Time Combat Game: Peixi Peng, Junliang Xing, Lili Cao, Lisen Mu, Chang Huang
- Monte Carlo Tree Search for Policy Optimization: Xiaobai Ma, Katherine Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer
- On Principled Entropy Exploration in Policy Optimization: Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, Martin Müller
- Recurrent Existence Determination Through Policy Optimization: Baoxiang Wang
- Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies: Muhammad Masood, Finale Doshi-Velez
- A probabilistic logic for resource-bounded multi-agent systems: Hoang Nga Nguyen, Abdur Rakib
- A Value-based Trust Assessment Model for Multi-agent Systems: Kinzang Chhogyal, Abhaya Nayak, Aditya Ghose, Hoa Khanh Dam
- Branch-and-Cut-and-Price for Multi-Agent Pathfinding: Edward Lam, Pierre Le Bodic, Daniel Harabor, Peter J. Stuckey
- Decidability of Model Checking Multi-Agent Systems with Regular Expressions against Epistemic HS Specifications: Jakub Michaliszyn, Piotr Witkowski
- Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search: Jiaoyang Li, Eli Boyarski, Ariel Felner, Hang Ma, Sven Koenig
- Integrating Decision Sharing with Prediction in Decentralized Planning for Multi-Agent Coordination under Uncertainty: Minglong Li, Wenjing Yang, Zhongxuan Cai, Shaowu Yang, Ji Wang
- Multi-agent Attentional Activity Recognition: Kaixuan Chen, Lina Yao, Dalin Zhang, Bin Guo, Zhiwen Yu
- Multi-Agent Pathfinding with Continuous Time: Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, Roni Stern
- Priority Inheritance with Backtracking for Iterative Multi-agent Path Finding: Keisuke Okumura, Manao Machida, Xavier Défago, Yasumasa Tamura
- The Interplay of Emotions and Norms in Multiagent Systems: Anup K. Kalia, Nirav Ajmeri, Kevin S. Chan, Jin-Hee Cho, Sibel Adali, Munindar Singh
- Unifying Search-based and Compilation-based Approaches to Multi-agent Path Finding through Satisfiability Modulo Theories: Pavel Surynek
- Implicitly Coordinated Multi-Agent Path Finding under Destination Uncertainty: Success Guarantees and Computational Complexity (Extended Abstract): Bernhard Nebel, Thomas Bolander, Thorsten Engesser, Robert Mattmüller
- Embodied Conversational AI Agents in a Multi-modal Multi-agent Competitive Dialogue: Rahul Divekar, Xiangyang Mou, Lisha Chen, Maíra Gatti de Bayser, Melina Alberio Guerra, Hui Su
- Multi-Agent Path Finding on Ozobots: Roman Barták, Ivan Krasičenko, Jiří Švancara
- Multi-Agent Visualization for Explaining Federated Learning: Xiguang Wei, Quan Li, Yang Liu, Han Yu, Tianjian Chen, Qiang Yang
- Automated Machine Learning with Monte-Carlo Tree Search: Herilalaina Rakotoarison, Marc Schoenauer, Michele Sebag
- Influence of State-Variable Constraints on Partially Observable Monte Carlo Planning: Alberto Castellini, Georgios Chalkiadakis, Alessandro Farinelli
- Multiple Policy Value Monte Carlo Tree Search: Li-Cheng Lan, Wei Li, Ting han Wei, I-Chen Wu
- Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search: Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien
- A Convergence Analysis of Distributed SGD with Communication-Efficient Gradient Sparsification: Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, Xiaowen Chu
- AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems: Yanchen Deng, Ziyu Chen, Dingding Chen, Wenxin Zhang, Xingqiong Jiang
- Distributed Collaborative Feature Selection Based on Intermediate Representation: Xiucai Ye, Hongmin Li, Akira Imakura, Tetsuya Sakurai
- FABA: An Algorithm for Fast Aggregation against Byzantine Attacks in Distributed Neural Networks: Qi Xia, Zeyi Tao, Zijiang Hao, Qun Li
- Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent: Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang, Yifei Cheng
- Fully Distributed Bayesian Optimization with Stochastic Policies: Javier Garcia-Barcos, Ruben Martinez-Cantin
Github链接
https://github.com/NeuronDanc...
推荐阅读
* 83篇文献-万字总结 || 强化学习之路
* 《十个关键点》PPT汇总|| 强化学习和最优控制的81页
专注深度强化学习前沿技术干货,论文,框架,学习路线等,欢迎关注微信公众号。
更多深度强化学习精选知识请关注深度强化学习实验室专栏,投稿请联系微信 1946738842.