月球基地蒋司令 · 2020年07月25日

用开源212点人脸关键点实现Android人脸实时打码,内附Github地址

什么是人脸匿名(Face Anonymization)

随着人脸识别技术的普及,人脸数据的隐私问题也得到越来越多关注,针对隐私保护的研究也陆续出现。目前大致有下面3个方向

  1. 篡改输入人脸识别系统的图像。
  2. 生成式对抗网络(GAN)来匿名某人的照片或视频。
  3. 直接模糊人脸识别到的人脸

本文主要讲第3点,讲讲怎么使用移动端人脸关键点算法实现人脸匿名功能。这种方法对设备要求低,代码简单易懂,修改后就可直接落地。

下图就是最终想实现的功能
id_protect_demo1.gif

什么是人脸关键点算法(Face Landmarks)

人脸关键点检测是人脸相关算法中的关键一环,它是人脸识别、表情分析、3D人脸重建,表情驱动3D动画等一系列人脸相关问题的前提。

face_points.png

我们将使用TengineKit来实现人脸匿名功能

TengineKit

免费移动端实时人脸212关键点SDK。是一个易于集成的人脸检测和人脸关键点SDK。它可以在各种手机上以非常低的延迟运行。
https://github.com/OAID/TengineKit

TengineKit

实现

配置 Gradle

Project中的build.gradle添加

    repositories {
        ...
        mavenCentral()
        ...
    }

    allprojects {
        repositories {
            ...
            mavenCentral()
            ...
        }
    }

主Module中的build.gradle添加

    dependencies {
        ...
        implementation 'com.tengine.android:tenginekit:1.0.5'
        ...
    }

配置 manifests

    <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
    <uses-permission android:name="android.permission.INTERNET"/>

    <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
    <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
    <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

    <uses-permission android:name="android.permission.CAMERA"/>
    <uses-permission android:name="android.permission.FLASHLIGHT" />

    <uses-feature android:name = "android.hardware.camera" android:required="true"/>
    <uses-feature android:name = "android.hardware.camera.autofocus" />

初始化Android Camera

为App创建自定义摄像头界面的步骤如下:

  1. 检测和访问Camera
  2. 创建预览TextureView
  3. 构建预览TextureView布局
  4. 将Camera和TextureView绑定
  5. 启动预览

我们先new一个TextureView.SurfaceTextureListener,在里面完成camera的初始配置,当TextureView可用的时候,onSurfaceTextureAvailable中的代码将被调用

   private final TextureView.SurfaceTextureListener surfaceTextureListener = new TextureView.SurfaceTextureListener() {
        @Override
        public void onSurfaceTextureAvailable(final SurfaceTexture texture, final int width, final int height) {
            int index = getCameraId();
            camera = Camera.open(index);

            try {
                Camera.Parameters parameters = camera.getParameters();
                List<String> focusModes = parameters.getSupportedFocusModes();
                if (focusModes != null && focusModes.contains(Camera.Parameters.FOCUS_MODE_CONTINUOUS_PICTURE)) {
                    parameters.setFocusMode(Camera.Parameters.FOCUS_MODE_CONTINUOUS_PICTURE);
                }
                List<Camera.Size> cameraSizes = parameters.getSupportedPreviewSizes();
                Size[] sizes = new Size[cameraSizes.size()];
                int i = 0;
                for (Camera.Size size : cameraSizes) {
                    sizes[i++] = new Size(size.width, size.height);
                }
                Size previewSize = CameraConnectionFragment.chooseOptimalSize(sizes, desiredSize.getWidth(), desiredSize.getHeight());
                parameters.setPreviewSize(previewSize.getWidth(), previewSize.getHeight());
                camera.setDisplayOrientation(90);
                camera.setParameters(parameters);
                camera.setPreviewTexture(texture);
            } catch (IOException exception) {
                camera.release();
            }

            camera.setPreviewCallbackWithBuffer(imageListener);
            Camera.Size s = camera.getParameters().getPreviewSize();
            camera.addCallbackBuffer(new byte[ImageUtils.getYUVByteSize(s.height, s.width)]);

            textureView.setAspectRatio(s.height, s.width);
            camera.startPreview();
        }

        @Override
        public void onSurfaceTextureSizeChanged(final SurfaceTexture texture, final int width, final int height) {
        }

        @Override
        public boolean onSurfaceTextureDestroyed(final SurfaceTexture texture) {
            return true;
        }

        @Override
        public void onSurfaceTextureUpdated(final SurfaceTexture texture) {
        }
    };

此处将textureView和camera联系起来

    textureView.setSurfaceTextureListener(surfaceTextureListener);

当camera启动预览,textureView得到真实的size后。我们得到了camera的输出视频流的宽高和预览textureView,将其保存起来,后续有用到。

    textureView.setRealSizeListener(new AutoFitTextureView.RealSizeListener() {
        @Override
        public void onRealSizeMeasure(int w, int h) {
            if(!isReady){
                isReady = true;
                Camera.Size s = camera.getParameters().getPreviewSize();
                cameraReadyListener.onCameraReady(
                        s.width, s.height,w, h
                );
            }
        }
    });

处理Camera传过来的视频流

首先我们先初始化TengineKit:

  1. 选用camera处理模式
  2. 打开人脸检测和人脸关键点功能
  3. 设置视频流格式为YUV_NV21(Android camera默认格式)
  4. 设置输入视频流的宽高,此处为camera的预览宽高
  5. 设置输出视频流的宽高,此处为textrureView的宽高
  6. 设置输入视频流来自前置摄像头
    com.tenginekit.Face.init(getBaseContext(),
            AndroidConfig.create()
                    .setCameraMode()
                    .openFunc(AndroidConfig.Func.Detect)
                    .openFunc(AndroidConfig.Func.Landmark)
                    .setInputImageFormat(AndroidConfig.ImageFormat.YUV_NV21)
                    .setInputImageSize(previewWidth, previewHeight)
                    .setOutputImageSize(outputWidth, outputHeight)
    );
    com.tenginekit.Face.Camera.switchCamera(false);

处理数据

  1. 得到手机旋转角度,将其设置到TengineKit
  2. 开始检测,当检测到人脸数目大于0的时候,调用faceDetect.landmark2d(),得到人脸关键点链表
    int degree = CameraEngine.getInstance().getCameraOrientation(sensorEventUtil.orientation);

    com.tenginekit.Face.Camera.setRotation(degree - 90, false,
            outputWidth, outputHeight);

    com.tenginekit.Face.FaceDetect faceDetect = Face.detect(data);
    faceLandmarks = null;
    if(faceDetect.getFaceCount() > 0){
        faceLandmarks = faceDetect.landmark2d();
    }

高斯模糊和绘制

这里使用Android的bitmap来实现功能,这种做法比较粗糙,性能差,但是简单易懂,如果读者有兴趣可以使用OpenGLES来实现此功能。

  1. 将从摄像头中得到的yuv数据通过TengineKit的图片帮助函数转化为Bitmap
  2. 通过人脸关键点的外接框,裁剪bitmap得到人脸的bitmap数组
  3. 将得到的人脸bitmap进行高斯模糊
    if(testBitmap != null){
        testBitmap.recycle();
    }
    testBitmap = Face.Image.convertCameraYUVData(
            data,
            previewWidth, previewHeight,
            outputWidth, outputHeight,
            - 90,
            true);


    for(Bitmap bitmap : testFaceBitmaps){
        bitmap.recycle();
    }
    testFaceBitmaps.clear();
    if(testBitmap != null && faceDetect.getFaceCount() > 0){
        if(faceLandmarks != null){
            for (int i = 0; i < faceLandmarks.size(); i++) {
                    Bitmap face = BitmapUtils.getDstArea(testBitmap, faceLandmarks.get(i).getBoundingBox());
                    face = BitmapUtils.blurByGauss(face, 50);
                    testFaceBitmaps.add(face);
            }
        }
    }

    runInBackground(new Runnable() {
        @Override
        public void run() {
            trackingOverlay.postInvalidate();
        }
    });

trackingOverlay为定制的view,将canvas暴露出来用于画bitmap

    trackingOverlay.addCallback(new OverlayView.DrawCallback() {
        @Override
        public void drawCallback(final Canvas canvas) {
            if(testBitmap != null){
                canvas.drawBitmap(testBitmap, 0,0, circlePaint);
            }
            if(faceLandmarks != null){
                for (int i = 0; i < faceLandmarks.size(); i++) {
                    Rect r = faceLandmarks.get(i).getBoundingBox();
                    canvas.drawRect(r, circlePaint);
                    canvas.drawBitmap(testFaceBitmaps.get(i), r.left, r.top, circlePaint);
                }
            }
        }
    });

效果

原图结果
ezgif.com-webp-to-jpg.jpgezgif.com-webp-to-jpg (1).jpg

Demo

v2-b7e15d5c0b2b46a140f6721a59d51109_b.gif

参考

  1. TengineKit - Free, Fast, Easy, Real-Time Face Detection & Face Landmarks SDK On Mobile.
  2. brighter.ai
更多Tengine相关内容请关注Tengine-边缘AI推理框架专栏。
推荐阅读
关注数
3393
内容数
68
Tengine是一款轻量级模块化高性能的神经网络推理引擎 ;欢迎体验Tengine,[链接] 《Tengine开发者入门资料包》[链接]
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息