白山头 · 2020年12月17日

STA:SRAM中min_period的由来

image1.png

今天在此总结下关于为什么sram中有个min\_period的check。

min\_pulse\_width

首先,min\_pulse\_width, 是检查时序逻辑中clock信号的高电平与低电平的宽度是否超过了规定的最窄宽度。

对于这个check,是不能够忽略的。理论上必须fix。但是由于在signoff是会加一些derating,uncertainty, 以及各种corner,因为存在一定的margin,所以,如果有违例,但是芯片回来却没有问题,也不必惊讶,那是因为这些违例尚在margin的覆盖范围之内。

强烈建议不要带着mpw违例进行signoff,而如果必须如此,需谨慎评估风险。

min\_period

既然有了min\_pulse\_width, 为什么对于sram,还有个min\_period的check?

这个要从sram的原理说起。

image2.png
六管sram bitcell

对于一个常见的六管sram为例。

那么,对于这个bitcell的读取过程如下:

假定存储的内容为1, 即在Q处的电平为高. 读周期之初,两根位线预充值为逻辑1, 随后字线WL充高电平,使得两个访问控制晶体管M5与M6通路。第二步是保存在Q的值传递给位线BL在它预充的电位,而泻掉(BL非)预充的值,这是通过M1与M5的通路直接连到低电平使其值为逻辑0 (即Q的高电平使得晶体管M1通路). 在位线BL一侧,晶体管M4与M6通路,把位线连接到VDD所代表的逻辑1 (M4作为P沟道场效应管,由于栅极加了(Q非)的低电平而M4通路). 如果存储的内容为0, 相反的电路状态将会使(BL非)为1而BL为0. 只需要(BL非)与BL有一个很小的电位差,读取的放大电路将会辨识出哪根位线是1哪根是0. 敏感度越高,读取速度越快。

简单来说,SRAM在读取之前需要对BL BLB进行预充电(precharge),    然后打开WL,然后BL,BLB才是被送入sense amp进行比较。

再来看时序图。

image3.png
时序图

当sram读取之后,BL/BLB需要再次重新进行预充电,以便进行下一次读取。

那么这个min period,就是SRAM本身的delay(CLK->RD)再加上BL/BLB预充电的时间。

因此回到最初的问题。

为什么sram有个min\_period的check。

答案是为了给sram的bitline进行预充电留足时间。

鸣谢

感谢群中好友陈锋, Antenna的解答。

附件

SRAM的操作

SRAM的基本单元有3种状态:standby (电路处于空闲), reading (读)与writing (修改内容). SRAM的读或写模式必须分别具有"readability"(可读)与"write stability"(写稳定).

Standby

如果字线(Word Line)没有被选为高电平, 那么作为控制用的M5与M6两个晶体管处于断路,把基本单元与位线隔离。

由M1 – M4组成的两个反相器继续保持其状态,只要保持与高、低电平的连接。

Reading

假定存储的内容为1, 即在Q处的电平为高. 读周期之初,两根位线预充值为逻辑1, 随后字线WL充高电平,使得两个访问控制晶体管M5与M6通路。

第二步是保存在Q的值传递给位线BL在它预充的电位,而泻掉(BL非)预充的值,这是通过M1与M5的通路直接连到低电平使其值为逻辑0 (即Q的高电平使得晶体管M1通路).

在位线BL一侧,晶体管M4与M6通路,把位线连接到VDD所代表的逻辑1 (M4作为P沟道场效应管,由于栅极加了(Q非)的低电平而M4通路).

如果存储的内容为0, 相反的电路状态将会使(BL非)为1而BL为0.

只需要(BL非)与BL有一个很小的电位差,读取的放大电路将会辨识出哪根位线是1哪根是0.

敏感度越高,读取速度越快。

Writing

写周期之初,把要写入的状态加载到位线。

如果要写入0,则设置(BL非)为1且BL为0。

随后字线WL加载为高电平,位线的状态被载入SRAM的基本单元。

这是通过位线输入驱动(的晶体管)被设计为比基本单元(的晶体管)更为强壮,使得位线状态可以覆盖基本单元交叉耦合的反相器的以前的状态!

附:STA教程分享

作者:白山头
来源:https://mp.weixin.qq.com/s/2r...
作者微信公众号
baishantou.png



相关文章推荐

更多IC设计技术干货请关注IC设计技术专栏。
推荐阅读
关注数
11062
内容数
1219
主要交流IC以及SoC设计流程相关的技术和知识
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息