AI学习者 · 2022年08月10日 · 广东

HOG特征详解与行人检测

转载于:OpenCV学堂

作者:gloomyfish

HOG概述

HOG(Histogram of Oriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征提取的大致流程如下:

image.png

详细解读

第一步:灰度化
对HOG特征提取来说第一步是对输入的彩色图像转换为灰度图像,图像灰度化的方法有很多,不同灰度化方法之间有一些微小的差异,从彩色到灰度的图像转换可以表示如下:

image.png

第二步:计算图像梯度
计算图像的X方向梯度dx与Y方向梯度dy,根据梯度计算mag与角度,计算梯度时候可以先高斯模糊一下(可选步骤),然后使用sobel或者其它一阶导数算子计算梯度值dx、dy、mag、angle:

image.png

第三步:Cell分割与Block
对于图像来说,分成8x8像素块,每个块称为一个Cell,每个2x2大小的Cell称为一个Block,每个Cell根据角度与权重建立直方图,每20度为一个BIN,每个Cell得到9个值、每个Block得到36个值(4x9), 图像如下:

image.png

每个Block为单位进行L2数据归一化,作用是抵消光照/迁移影响,L2的归一化的公式如下:

image.png

第四步:生成描述子
对于窗口64x128范围大小的像素块,可以得到8x16个Cell, 使用Block在窗口移动,得到输出的向量总数为7x15x36=3780特征向量,每次Block移动步长是八个像素单位,一个Cell大小。

image.png

使用HOG特征数据

HOG特征本身是不支持旋转不变性与多尺度检测的,但是通过构建高斯金字塔实现多尺度的开窗检测就会得到不同分辨率的多尺度检测支持。OpenCV中HOG多尺度对象检测API如下:

image.png

使用OpenCV预训练SVM行人HOG特征分类器实现多尺度行人检测的代码如下:

image.png

原图显示如下:

image.png

运行显示如下:

image.png

推荐阅读
Two-Stage目标检测困难负样本如何利用?大小目标如何同时优化?nRPN给你答案!
超越YOLO5-Face | YOLO-FaceV2正式开源Trick+学术点拉满
Anchor-Free即插即用标签分配 | 平滑标签分配+动态IoU匹配解决标签分配不一致
432.4 FPS | LPS-Net 结合内存、FLOPs、CUDA实现超快语义分割模型

更多嵌入式AI相关技术干货请关注嵌入式AI专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。
推荐阅读
关注数
18847
内容数
1383
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息