FPGA HLS双线性插值图像缩放视频拼接,上板验证稳定通过,提供3套工程源码和技术支持
1、前言
本设计图像缩放算法采用双线性插值,实现方式是Xilinx的HLS,采用C++语言实现代码级功能,再有HLS2019.1综合编译导出RTL级verilog代码,最后导出IP使用。
本文详细描述了FPGA HLS双线性插值图像缩放+视频拼接的实现设计方案,工程代码编译通过后上板调试验证,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的高速信号传输领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
本设计提供3套工程源码:
工程1:HDMI视频输入1080P,不缩放1080P直接输出;
工程2:HDMI视频输入1080P,缩小至720P输出;
工程3:HDMI视频输入1080P,缩小至960x540,调用Video Mixer IP二分频输出;
附带还有HLS图像缩放的HLS工程源码;
本例程使用的是Xilinx Kintex7 FPGA,若要用于Zynq,将HLS工程的FPGA器件型号更改后重新综合编译导出IP即可。
2、HLS实现双线性插值图像缩放
开局直接放大招:提供源码及工程;
重点讲解双线性插值图像缩放;
此功能模块使用HLS实现,并已封装导出IP,可在工程中添加并使用,可提供HLS工程源码;
若是用verilog实现双线性插值图像缩放,是一项及其复杂的事情,且不能做到任意比例,网上也有源码,不信你可以去下载并验证,肯定做不到任意比例缩放;这样一来,HLS则成为了更好的选项,偷偷告诉你,HLS几行代码就搞定了;关于这个ip可以看我前面的文章HLS实现双线性插值图像缩放
前面文章里的IP适用于zynq系列机器,这里讲的这个IP适用于7系列机器;
3、vivado工程1:1080P缩小720P
前面废话太多了,直接上工程:
工程1:1080P缩小至720P;
开发板:Xilinx Kintex7 开发板;
开发环境:vivado2019.1;
输入:HDMI-1080P;
输出:HDMI-720P;
工程架构如下:
用电脑输出1080P视频模拟输入;
输入HDMI视频经IT6802解码为VGA格式的RGB视频流,关于IT6802的芯片解读和寄存器配置,请参考我前面的文章IT6802的芯片解读和寄存器配置
然后用Xilinx官方IP将VGA格式的RGB视频流转为AXIS视频流;
经自定义双线性插值图像缩放IP VIDEO SCALER将原视频缩小至720P;
后面就是Xilinx的图像处理套路了,什么VDMA之类的,这里就不多说了;
BD工程如下:
代码架构如下:
SDK软件文件如下:
VDMA配置c代码如下:
#include "xil_io.h"
#include "xparameters.h"
#include "helai_vdma.h"
#define VDMA_BASEADDR XPAR_AXI_VDMA_0_BASEADDR
#define VIDEO_BASEADDR0 0x80000000
#define VIDEO_BASEADDR1 0x81000000
#define VIDEO_BASEADDR2 0x82000000
#define H_ACTIVE 1920
#define V_ACTIVE 1080
#define H_STRIDE 1920
u32 i=0;
#define SUM H_ACTIVE*V_ACTIVE*4 //color back 1920*1080*4
void helai_vdma(){
//set color back to black
for(i=0;i<SUM;i++){
Xil_Out16((VIDEO_BASEADDR0 + i), 0x00);
Xil_Out16((VIDEO_BASEADDR1 + i), 0x00);
Xil_Out16((VIDEO_BASEADDR2 + i), 0x00);
}
//VDMA_WRITE
Xil_Out32((VDMA_BASEADDR + 0x030), 0x108B);// enable circular mode
Xil_Out32((VDMA_BASEADDR + 0x0AC), VIDEO_BASEADDR0); // start address
Xil_Out32((VDMA_BASEADDR + 0x0B0), VIDEO_BASEADDR1); // start address
Xil_Out32((VDMA_BASEADDR + 0x0B4), VIDEO_BASEADDR2); // start address
Xil_Out32((VDMA_BASEADDR + 0x0A8), (H_STRIDE*3)); // h offset (H_STRIDE* 3) bytes
Xil_Out32((VDMA_BASEADDR + 0x0A4), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA_BASEADDR + 0x0A0), V_ACTIVE); // v size (V_ACTIVE)
//VDMA_READ
Xil_Out32((VDMA_BASEADDR + 0x000), 0x8B); // enable circular mode
Xil_Out32((VDMA_BASEADDR + 0x05c), VIDEO_BASEADDR0); // start address
Xil_Out32((VDMA_BASEADDR + 0x060), VIDEO_BASEADDR1); // start address
Xil_Out32((VDMA_BASEADDR + 0x064), VIDEO_BASEADDR2); // start address
Xil_Out32((VDMA_BASEADDR + 0x058), (H_STRIDE*3)); // h offset (H_STRIDE * 3) bytes
Xil_Out32((VDMA_BASEADDR + 0x054), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA_BASEADDR + 0x050), V_ACTIVE); // v size (V_ACTIVE)
}
主函数c代码如下:
#include <stdio.h>
#include "xgpio.h"
#include "oak_iic.h"
#include "unistd.h"
#include "helai_vdma.h"
#include "helai_color_back.h"
#include "xvideo_scaler.h"
XVideo_scaler K7_XVideo_scaler;
XGpio_Config *XGpioCfg;
XGpio led_gpio;
#define AXI_GPIO_DEVICE_ID XPAR_GPIO_0_DEVICE_ID
int main(){
XGpioCfg = XGpio_LookupConfig(AXI_GPIO_DEVICE_ID);
XGpio_CfgInitialize(&led_gpio, XGpioCfg, XGpioCfg->BaseAddress);
XGpio_SetDataDirection(&led_gpio, 1, 0); //output
XGpio_DiscreteWrite(&led_gpio, 1, 0);
oak_i2c_init(IT6802_IIC_BASEADDR, 100000, 0x90>>1, IIC_REG_LEN8, IIC_DATA_LEN8);
IT6802_Init(IT6802_IIC_BASEADDR);
XVideo_scaler_Initialize(&K7_XVideo_scaler, XPAR_VIDEO_SCALER_0_DEVICE_ID);
XHls_video_scaler_setup(1080,1920,540,960);
helai_vdma();
while(1){
usleep(500000);
XGpio_DiscreteWrite(&led_gpio, 1, 1);
usleep(500000);
XGpio_DiscreteWrite(&led_gpio, 1, 0);
}
}
4、vivado工程2:1080P缩小后mixer二分频
工程2:1080P缩小至960x540并用video mixer二分屏显示;
开发板:Xilinx Kintex7 开发板;
开发环境:vivado2019.1;
输入:HDMI-1080P;
输出:HDMI-960x540二分屏显示;
工程架构如下:
用电脑输出1080P视频模拟输入;
输入HDMI视频经IT6802解码为VGA格式的RGB视频流,关于IT6802的芯片解读和寄存器配置,请参考我前面的文章IT6802的芯片解读和寄存器配置
然后调用两个Xilinx官方IP将VGA格式的RGB视频流转为两路AXIS视频流;
调用两个自定义双线性插值图像缩放IP VIDEO SCALER将原视频缩小至720P;
后面就是Xilinx的图像处理套路了,什么VDMA之类的,这里就不多说了;这里是两路视频,所以IP要用两个
BD工程如下:
代码架构如下:
SDK软件文件如下:
VDMA配置c代码如下:
#include "xil_io.h"
#include "xparameters.h"
#include "helai_vdma.h"
#define VDMA0_BASEADDR XPAR_AXIVDMA_0_BASEADDR
#define VDMA1_BASEADDR XPAR_AXIVDMA_1_BASEADDR
//1frame video = 960*540*3=0x17bb00
#define VIDEO0_BASEADDR0 0x80000000
#define VIDEO0_BASEADDR1 0x81000000
#define VIDEO0_BASEADDR2 0x82000000
#define VIDEO1_BASEADDR0 0x83000000
#define VIDEO1_BASEADDR1 0x84000000
#define VIDEO1_BASEADDR2 0x85000000
#define H_ACTIVE 960
#define V_ACTIVE 540
#define H_STRIDE 960
void helai_vdma(){
//VDMA0
//VDMA_WRITE
Xil_Out32((VDMA0_BASEADDR + 0x030), 0x108B);// enable circular mode
Xil_Out32((VDMA0_BASEADDR + 0x0AC), VIDEO0_BASEADDR0); // start address
Xil_Out32((VDMA0_BASEADDR + 0x0B0), VIDEO0_BASEADDR1); // start address
Xil_Out32((VDMA0_BASEADDR + 0x0B4), VIDEO0_BASEADDR2); // start address
Xil_Out32((VDMA0_BASEADDR + 0x0A8), (H_STRIDE*3)); // h offset (H_STRIDE* 3) bytes
Xil_Out32((VDMA0_BASEADDR + 0x0A4), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA0_BASEADDR + 0x0A0), V_ACTIVE); // v size (V_ACTIVE)
//VDMA_READ
Xil_Out32((VDMA0_BASEADDR + 0x000), 0x8B); // enable circular mode
Xil_Out32((VDMA0_BASEADDR + 0x05c), VIDEO0_BASEADDR0); // start address
Xil_Out32((VDMA0_BASEADDR + 0x060), VIDEO0_BASEADDR1); // start address
Xil_Out32((VDMA0_BASEADDR + 0x064), VIDEO0_BASEADDR2); // start address
Xil_Out32((VDMA0_BASEADDR + 0x058), (H_STRIDE*3)); // h offset (H_STRIDE * 3) bytes
Xil_Out32((VDMA0_BASEADDR + 0x054), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA0_BASEADDR + 0x050), V_ACTIVE); // v size (V_ACTIVE)
//VDMA1
//VDMA_WRITE
Xil_Out32((VDMA1_BASEADDR + 0x030), 0x108B);// enable circular mode
Xil_Out32((VDMA1_BASEADDR + 0x0AC), VIDEO1_BASEADDR0); // start address
Xil_Out32((VDMA1_BASEADDR + 0x0B0), VIDEO1_BASEADDR1); // start address
Xil_Out32((VDMA1_BASEADDR + 0x0B4), VIDEO1_BASEADDR2); // start address
Xil_Out32((VDMA1_BASEADDR + 0x0A8), (H_STRIDE*3)); // h offset (H_STRIDE* 3) bytes
Xil_Out32((VDMA1_BASEADDR + 0x0A4), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA1_BASEADDR + 0x0A0), V_ACTIVE); // v size (V_ACTIVE)
//VDMA_READ
Xil_Out32((VDMA1_BASEADDR + 0x000), 0x8B); // enable circular mode
Xil_Out32((VDMA1_BASEADDR + 0x05c), VIDEO1_BASEADDR0); // start address
Xil_Out32((VDMA1_BASEADDR + 0x060), VIDEO1_BASEADDR1); // start address
Xil_Out32((VDMA1_BASEADDR + 0x064), VIDEO1_BASEADDR2); // start address
Xil_Out32((VDMA1_BASEADDR + 0x058), (H_STRIDE*3)); // h offset (H_STRIDE * 3) bytes
Xil_Out32((VDMA1_BASEADDR + 0x054), (H_ACTIVE*3)); // h size (H_ACTIVE * 3) bytes
Xil_Out32((VDMA1_BASEADDR + 0x050), V_ACTIVE); // v size (V_ACTIVE)
}
主函数c代码如下:
#include <stdio.h>
#include "xgpio.h"
#include "oak_iic.h"
#include "unistd.h"
#include "helai_vdma.h"
#include "helai_color_back.h"
#include "xvideo_scaler.h"
#include "helai_mixer.h"
XVideo_scaler K7_XVideo_scaler0,K7_XVideo_scaler1;
XGpio_Config *XGpioCfg;
XGpio led_gpio;
#define AXI_GPIO_DEVICE_ID XPAR_GPIO_0_DEVICE_ID
int main(){
XGpioCfg = XGpio_LookupConfig(AXI_GPIO_DEVICE_ID);
XGpio_CfgInitialize(&led_gpio, XGpioCfg, XGpioCfg->BaseAddress);
XGpio_SetDataDirection(&led_gpio, 1, 0); //output
XGpio_DiscreteWrite(&led_gpio, 1, 0);
oak_i2c_init(IT6802_IIC_BASEADDR, 100000, 0x90>>1, IIC_REG_LEN8, IIC_DATA_LEN8);
IT6802_Init(IT6802_IIC_BASEADDR);
XVideo_scaler_Initialize(&K7_XVideo_scaler0, XPAR_VIDEO_SCALER_0_DEVICE_ID);
XHls_video_scaler_setup(&K7_XVideo_scaler0,1080,1920,540,960);
XVideo_scaler_Initialize(&K7_XVideo_scaler1, XPAR_VIDEO_SCALER_1_DEVICE_ID);
XHls_video_scaler_setup(&K7_XVideo_scaler1,1080,1920,540,960);
helai_vdma();
helai_mixer();
while(1){
usleep(500000);
XGpio_DiscreteWrite(&led_gpio, 1, 1);
usleep(500000);
XGpio_DiscreteWrite(&led_gpio, 1, 0);
}
}
5、上板调试验证并演示
上板调试:
给出工程2的调试输出视频:
[video(video-U9HV1lgH-1667011476141)(type-csdn)(url-https://live.csdn.net/v/embed...)(image-https://video-community.csdni...)(title-hdmi_scaler_mixer2)]
6、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以百度网盘链接方式发送,
通过微信获取资料:
网盘资料如下: