健康奶 · 2023年10月09日 · 重庆市

紫光同创FPGA纯verilog代码实现视频拼接,提供PDS工程源码和技术支持

紫光同创FPGA纯verilog代码实现视频拼接,提供PDS工程源码和技术支持

1、前言

“苟利国家生死以,岂因祸福避趋之!”大洋彼岸的我优秀地下档员,敏锐地洞察到祖国的短板在于高精尖半导体的制造领域,于是本着为中华民族伟大复兴的中国梦贡献绵薄之力的初心,懂先生站在高略高度和长远角度谋划,宁愿背当代一世之骂名也要为祖国千秋万世谋,2018年7月,懂先生正式打响毛衣战,随后又使出恰勃纸战术,旨在为祖国先进制程半导体领域做出自主可控的战略推动;在此,请收下我一声谢谢啊!!!!!!

2019年初我刚出道时,还是Xilinx遥遥领先的时代(现在貌似也是),那时的国产FPGA还处于辣鸡段位,国产FPGA仰望Xilinx情不自禁道:你以为躲在这里就找不到你吗?没用的,你那样拉轰的男人,无论在哪里,都像黑夜里的萤火虫那样的鲜明、那样的出众,你那忧郁的眼神,稀嘘的胡渣子,神乎其技的刀法,还有那杯Dry martine,都深深的迷住了我。。。然而才短短4年,如今的国产FPGA属于百家争鸣、百花齐放、八仙过海、神仙打架、方兴未艾、得陇望蜀、友商都是XX的喜极而泣之局面,面对此情此景,不得不吟唱老人家的诗句:魏武挥鞭,东临碣石有遗篇,萧瑟秋风今又是,换了人间。。。
言归正传,目前对于国产FPGA的共识有以下几点:
1:性价比高,与同级别国外大厂芯片相比,价格相差几倍甚至十几倍;
2:自主可控,国产FPGA拥有完整自主知识产权的产业链,从芯片到相关EDA工具
3:响应迅速,FAE技术支持比较到位,及时解决开发过程中遇到的问题,毕竟中文数据手册。。
4:采购方便,产业链自主可控,采购便捷

没玩过图像拼接都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
图像拼接在实际项目中应用广泛,特别是在医疗和军工行业,目前市面上的图像拼接方案主要有Xilinx官方推出的Video Mixer方案和自己手撕代码的自定义方案;Xilinx官方推出的Video Mixer方案直接调用IP,通过SDK配置即可实现,但他的使能难度较高,且对FPGA资源要求也很高,不太适合小规模FPGA,在zynq和K7以上平台倒是很使用,如果对Video Mixer方案感兴趣,可以参考我之前的博客,博客地址:
点击直接前往

本文使用紫光同创的PGL22G-6MBG324 FPGA纯verilog代码实现图像拼接,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,上电默认使用OV5640作为视频源,输入分辨率配置为640x720@30Hz,;FPGA采集到输入视频后,将图像数据复制一份,这样就有了两路一模一样的视频,用来模拟两路视频输入,如果你的手里有两个摄像头,则直接输入两路即可,原谅我太穷,买不起两个OV5640摄像头,只能这样模拟了。。。使用本人开发的HDMA视频缓存架构方案实现图像的乒乓缓存,不同的视频缓存与DDR3中不同的地址区域,读出视频时却一次性读完,从而达到视频拼接的输出效果;读出视频后,用纯verilog显示的HDMI输出模块送显示器显示即可;本设计提供1套Pango Design Suite 2021.4版本的工程源码

本博客详细描述了紫光同创FPGA纯verilog代码实现图像拼接的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的FPGA视频拼接叠加融合方案推荐

我的主页目前有FPGA视频拼接叠加融合专栏,改专栏收录了我目前手里已有的FPGA视频拼接叠加融合方案,从实现方式分类有基于HSL实现的视频拼接、基于纯verilog代码实现的视频拼接;从应用上分为单路、2路、3路、4路、8路、16路视频拼接;视频缩放+拼接;视频融合叠加;从输入视频分类可分为OV5640摄像头视频拼接、SDI视频拼接、CameraLink视频拼接等等;以下是专栏地址:
点击直接前往

我已有的紫光同创FPGA图像采集方案推荐

FPGA图像采集是做图像处理的基础,FPGA图像采集显示的核心在于图像的DDR缓存,紫光同创FPGA自带DDR控制器IP,该IP带AXI4-FULL从机接口,所以对于图像的DDR缓存,就相对简单了,我之前专门出过一篇紫光同创FPGA采集OV7725摄像头HDMI显示的博客,感兴趣的可以前往查看,以下是博客地址:
点击直接前往

我已有的紫光同创FPGA图像缩放方案推荐

本设计使用紫光同创FPGA做图像的任意尺寸缩放,我之前专门出过一篇Xilinx FPGA图像缩放方案的博客,建议先仔细读读该博客,以下是博客地址:
点击直接前往

3、设计思路框架

本文使用紫光同创的PGL22G-6MBG324 FPGA纯verilog代码实现图像拼接,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,上电默认使用OV5640作为视频源,输入分辨率配置为640x720@30Hz,;FPGA采集到输入视频后,将图像数据复制一份,这样就有了两路一模一样的视频,用来模拟两路视频输入,如果你的手里有两个摄像头,则直接输入两路即可,原谅我太穷,买不起两个OV5640摄像头,只能这样模拟了。。。使用本人开发的HDMA视频缓存架构方案实现图像的乒乓缓存,不同的视频缓存与DDR3中不同的地址区域,读出视频时却一次性读完,从而达到视频拼接的输出效果;读出视频后,用纯verilog显示的HDMI输出模块送显示器显示即可;本设计提供1套Pango Design Suite 2021.4版本的工程源码

工程设计框图如下:
在这里插入图片描述

为什么选择OV5640摄像头?

紫光同创FPGA做图像拼接,理论上可以选择使用任何摄像头作为视频输入源,比如廉价的OV7725、OV5640等,但图像拼接的前提是图像的大小得与输出分辨率向适应,比如你的输出分辨率是1280X720,两路视频拼接,那么每路输入视频的分辨率就应该为640X720,这样刚好两路视频二分频拼接,占满整个输出屏幕,要做到指定输入分辨率,就需要做图像缩放或者图像裁剪,而OV5640自带图像裁剪,你想输出什么分辨率,通过i2c配置即可;此外,OV7725摄像头也更便宜。。。

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,上电默认使用OV5640作为视频源;视频源选择如下:
在这里插入图片描述
视频源选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是动态彩条;
当(不注释) define COLOR_IN时,输入源视频是OV5640;

OV5640摄像头配置及采集

OV5640摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB565或者RGB888格式的视频数据,这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
其中摄像头配置为分辨率640x720,如下:
在这里插入图片描述
摄像头采集模块支持RGB565和RGB888格式的视频输出,可由参数配置,如下:
在这里插入图片描述
RGB_TYPE=0输出本RGB565格式;
RGB_TYPE=1输出本RGB888格式;
设计选择RGB888格式;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,以工程1为例,配置为辨率640x720,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

HDMA图像缓存

HDMA图像缓存的本质就是一个封装了用户接口的AXI4-FULL-MASTER总线,HDMA对外与DDR3交互,紫光同创FPGA自带的DDR3控制器的用户接口为AXI4-FULL总线,HDMA对内例化两个FIFO与FPGA内部逻辑交互,所以开发者在使用HDMA时,已无需再关心复杂的为AXI4-FULL协议,只需要像使用FIFO那样简单即可;HDMA架构如下:
在这里插入图片描述
代码架构如下:
在这里插入图片描述

输入输出视频

输入视频的数据格式为RGB,即典型的pclk、vs、de、rgb形式的VGA视频时序,但需要注意的是,因为输入视频直接与FIFO交互,FIFO的AXI侧的数据位宽为128位,为了数据的不错位,输入视频的rgb信号接口不能为传统的24位,这里可以设置为16或者32位,代码中通过参数配置,我配置为32位,相比于之前的HDMA,这里增加了一路视频输入接口,如下:
在这里插入图片描述

HDMA缓冲FIFO

例化两个FIFO作为FPGA逻辑数据与AXI4数据的缓冲,所谓缓冲,即数据位宽的转换、时钟域的转换、读写时机的控制等部分,FPGA逻辑侧的数据位宽为32位,AXI4侧的数据位宽为128位;以写FIFO为例,配置如下:
在这里插入图片描述

HDMA控制模块

HDMA控制模块的主要功能是实现AXI4-FULL主机和图像缓存读写地址切换两大功能;AXI4-FULL主机比较简单,照着AXI4-FULL时序图写就完事儿了,图像缓存读写地址切换就难了,本设计通过顶层的参数来配置图像缓存的帧数,如下:
HDMA_PINGPANG_EN=1则图像做两帧乒乓缓存;
HDMA_PINGPANG_EN=0则图像做单帧缓存;
本设计配置为HDMA_PINGPANG_EN=1;
为了实现2路视频的多帧缓存,在DDR3中开辟了4片内存区域,如下:
内存1和内存2用于第一路输入视频的乒乓缓存;
内存3和内存4用于第二路输入视频的乒乓缓存;
我们需要做的是控制两路视频分别写入对应的内存区域即可,这样就实现了不同的视频缓存于不同的内存区域,但读视频时却一次性读完,然后一次性输出到显示器,这样就达到了两路视频拼接二分频现实的效果;这里代码层面更为清晰,具体请参考代码;

HDMI输出

HDMI输出包括VGA时序和HDMI编码模块,VGA时序在紫光PGL22G-6MBG324 FPGA上只能做到720P,因为此FPGA可能太低端了,无法输出742.5M的串行时钟,当然,你用HDMI编码芯片是可以实现1080P的,所以这里只能做到720P的输出分辨率;HDMI编码模块待用原语实现,和Xilinx家的一样,代码结构如下:
在这里插入图片描述

4、PDS工程详解

开发板FPGA型号:紫光同创--PGL22G-6MBG324;
开发环境:Pango Design Suite 2021.4
输入:OV5640摄像头或动态彩条,分辨率640x720;
输出:HDMI,分辨率1280x720下二分屏显示两路640x720拼接视频;
工程作用:紫光同创FPGA图像视频采集系统;
工程代码架构如下:
在这里插入图片描述
工程的资源消耗如下:
在这里插入图片描述
工程已经综合编译完成,如下:
在这里插入图片描述

5、上板调试验证并演示

准备工作

你需要有以下装备才能移植并测试该工程代码:
1:FPGA开发板;
2:OV5640摄像头,如果没有也可以,就选择动态彩条;
3:HDMI传输线;
4:HDMI显示,要求分辨率支持1280x720;

静态演示

OV5640输入640x720分辨率两路视频拼接,HDMI输出静态演示如下:
在这里插入图片描述
动态彩条输入640x720分辨率两路视频拼接,HDMI输出静态演示如下:
在这里插入图片描述

动态演示

动态视频演示如下:
点击观看视频

6、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以百度网盘链接方式发送,
通过微信获取资料:
微信图片_20230604203730.jpg
资料如下:
在这里插入图片描述

推荐阅读
关注数
12
内容数
112
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息