AI学习者 · 2024年02月23日 · 广东

YOLOv9开源 | 架构图&模块改进&正负样本匹配&损失函数解读,5分钟即可理解YOLOv9

YOLOv9对比图

YOLOv7原作者出手,YOLOv9的性能依旧时一枝独秀:

image.png

YOLOv9架构图

YOLOv9的整体架构图如下(根据YOLOv9.yaml绘制):

image.png

YOLOv9改进点一览

  1. YOLOv9从可逆函数角度理论上分析了现有的CNN架构,基于这种分析,YOLOv9作者还设计了PGI和辅助可逆分支,并取得了优秀的结果;
  2. YOLOv9用到的PGI解决了深度监督只能用于极深的神经网络架构的问题,因此使得新的轻量级架构才更适合落地;
  3. YOLOv9中设计的GELAN仅使用传统卷积,就能实现比基于最先进技术的深度可分卷积设计更高的参数使用率,同时展现出轻量级、快速和精确的巨大优势;
  4. 基于所提出的PGI和GELAN,YOLOv9在MS COCO数据集上的性能在所有方面都大大超过了现有的实时目标检测器。

PGI(可编程梯度信息)组件

PGI主要包括三个组成部分,即:

  1. 主分支
  2. 辅助可逆分支
  3. 多级辅助信息

image.png

从图中可以看出,PGI推理过程仅使用主分支,因此不需要任何额外的推理成本。

GELAN模块

YOLOv9提出了新网络架构——GELAN。GELAN通过结合两种神经网络架构,即结合用梯度路径规划(CSPNet)和(ELAN)设计了一种广义的高效层聚合网络(GELAN);GELAN综合考虑了轻量级、推理速度和准确度。

image.png

GELAN整体架构如上图所示。YOLOv9将ELAN的能力进行了泛化,原始ELAN仅使用卷积层的堆叠,而GELAN可以使用任何计算块作为基础Module。

损失函数与样本匹配

image.png

通过上图代码可以看到,样本匹配依旧使用的是TaskAlign样本匹配。和YOLOv8、YOLOE、YOLOv6等算法保持一致;

分类损失:BCE Loss 回归损失:DFL Loss + CIoU Loss

速度&精度对比

image.png

可以看出,YOLOv9的性能最为优秀,应该会成为2D检测的新宠。

参考

[1].YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
[2].https://github.com/WongKinYiu/yolov9

作者:小书童
文章来源:集智书童

推荐阅读

更多嵌入式AI干货请关注嵌入式AI专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
18849
内容数
1389
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息