本文主要是对LLM PTQ量化方向的几个经典算法(GPTQ、SmoothQuant、AWQ)的代码实现进行介绍,一方面是为了加深对算法的理解,另一方面也是想看看有什么值得借鉴的地方。
一、GPTQ
GPTQ在LLM量化W4A16方向的地位毋庸置疑,它的出发点很朴素,就是试图最小化权重量化后和量化前的层函数误差,对这个最优化问题进行求解后结果包含二阶的Hessian matrix(海森矩阵),详细数学推理公式见文章HELLO七仔:GPTQ 模型量化,论文见:GPTQ,这里不做详细解释。本质上,它的核心流程其实就是量化-补偿-量化-补偿的迭代,下图可以说明这个过程。
本文以GPTQ-for-LLaMa (https://github.com/qwopqwop20...) 代码仓库为例来讲解GPTQ算法的实现,这个仓库主要是在LlaMa模型上应用GPTQ算法实现权重的4 bit量化。先来看下Llama中DeocoderLayer的基本结构,主要是由LlamaAttention、LlamaMLP和两个LlamaRMSNorm构成,GPTQ会对其中LlamaAttention和LlamaMLP层中的Linear层权重进行量化。
LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=1024, bias=False)
(v_proj): Linear(in_features=4096, out_features=1024, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=4096, out_features=14336, bias=False)
(up_proj): Linear(in_features=4096, out_features=14336, bias=False)
(down_proj): Linear(in_features=14336, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
整体量化过程大致可以分为3个部分:
- 利用calibration data计算Hessian矩阵。对模型进行逐层weight量化。
- 保存量化后的weight。
- 代码主要在llama.py、gptq.py、quantizer.py和quant_linear.py几个文件,由于篇幅有限我们仅关注核心代码部分。
1. 计算Hessian矩阵
Hessian矩阵会用于后面逐层量化过程中的损失和补偿计算,所以需要先离线计算得到。实现方式是在初始化GPTQ后在每一层注册hook,通过hook的方式在layer forward后使用calibration data的input来生成Hessian矩阵,这种计算方式还挺常见的,后面的算法中也有用到。下面这段代码即添加hook函数来利用calibration data进行计算,计算Hessian矩阵的逻辑体现在add_batch
函数中。
for name in subset:
gptq[name] = GPTQ(subset[name], observe=args.observe)
gptq[name].quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)
# generate Hessian H by calibration data
def add_batch(name):
def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
for h in handles:
h.remove()
为了利用所有的校准数据,这里通过迭代的方式将每组数据计算的Hessian矩阵值进行求和然后取平均,代码实现是迭代逐渐平均叠加的过程。
def add_batch(self, inp, out):
# Hessian H = 2 X XT + λ I
if self.observe:
self.inp1 = inp
self.out1 = out
else:
self.inp1 = None
self.out1 = None
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(self.layer.kernel_size, dilation=self.layer.dilation, padding=self.layer.padding, stride=self.layer.stride)
inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
inp = math.sqrt(2 / self.nsamples) * inp.float()
self.H += inp.matmul(inp.t())
2. 逐层weight量化
有了Hessian矩阵后,便可以用来计算量化误差从而更新权重了,这里是逐层使用fasterquant
方法作为入口来进行量化处理。
for name in subset:
scale, zero, g_idx, error = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=name)
quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize)
在fasterquant
方法中首先需要根据给定的权重值确定量化所需要的scale和zeropoint,由于采用的per-channel量化所以每个channel都需要计算它的scale和zeropoint,这里采用的是最简单的min-max方法来计算scale和zeropoint,代码如下:
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
接着为了增强数值稳定性加速收敛,需要完成完整的Hessian矩阵计算和cholesky分解,过程见代码注解。
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
# Hessian H = 2 X XT + λ I
# 在使用 Hessian 矩阵进行优化时,阻尼(dampening)是一种常见技术,用于改善数值稳定性和收敛性
H[diag, diag] += damp
# cholesky分解Hessian 矩阵,增强数值稳定性
# Cholesky 分解的下三角矩阵
H = torch.linalg.cholesky(H)
# Hessian 矩阵的逆
H = torch.cholesky_inverse(H)
# 逆矩阵分解的上三角矩阵
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
这样准备工作都完成了就可以进行论文中的算法具体代码实现了,下面这段代码就是完全对应论文中的伪代码实现,值得一提的是这里可以指定groupsize
来对量化的范围进行进一步的缩减,一定程度上可以减少离群值的影响。这里量化的per-channel scale和zero会随着W的迭代更新而发生变化,最终返回scale, zero, g_idx。
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
# use groupsize column for quantization
if groupsize != -1:
if (i1 + i) % groupsize == 0:
self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True)
if ((i1 + i) // groupsize) - now_idx == -1:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
now_idx += 1
q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q)**2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
torch.cuda.synchronize()
error = torch.sum(Losses).item()
groupsize = groupsize if groupsize != -1 else self.columns
g_idx = [i // groupsize for i in range(self.columns)]
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
if actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
g_idx = g_idx[invperm]
if isinstance(self.layer, transformers.Conv1D):
Q = Q.t()
self.print_loss(name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick))
if scale == []:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
scale = torch.cat(scale, dim=1)
zero = torch.cat(zero, dim=1)
return scale, zero, g_idx, error
其中quantize函数最终调用的_quantize实现如下,本质上是伪量化(包含量化和反量化)。
def _quantize(self, x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
3.保存量化weight
之前的步骤中量化和反量化后计算lose都是浮点位数的,所以并没有生成wbit位format的数值内容,在llama_pack
方法中通过model和之前得到的quantizer
(scale, zero)来生成wbit位数表达格式的量化模型,其定义如下所示
def llama_pack(model, quantizers, wbits, groupsize):
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
quant.make_quant_linear(model, quantizers, wbits, groupsize)
qlayers = find_layers(model, [quant.QuantLinear])
print('Packing ...')
for name in qlayers:
print(name)
quantizers[name], scale, zero, g_idx, _, _ = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
print('Done.')
return model
其中quantizers
来自量化后的返回,它是一个dict里面保存了每一个层和它对应的quantizer
、scale
、zero
、group_idx
等信息,其中quantizer
是layer-level的,zero
和scale
是group-level的。
quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize)
接下来逐步介绍llama_pack的实现,首先由make_quant_linear
递归地将所有Linear
替换为QuantLinear
def make_quant_linear(module, names, bits, groupsize, name=''):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
for name1, child in module.named_children():
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
其中QuantLinear
的定义如下,通过qweight
、qzeros
和scales
、g_idx
等属性来保存量化后的低比特信息。
class QuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
super().__init__()
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize if groupsize != -1 else infeatures
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
接着对每个QuantLinear
层使用pack来重新打包量化后的权重数据。实际的存储数据格式是uint32,所以针对4bit量化值,单个qweight可以存储8个权重值。
- 首先对原weight利用scale和zero计算出int4范围的int权重表示。
- 再合并成uint32格式进行存储,这里采用了intweight左移和或运算来完成低比特到32bit的转存;zeros也是类似逻辑转成qzeros表示;scales直接转为half格式保存;g_idx保持不变;这样就完成了对原weight的压缩转换。
- 推理的时候需要利用scales和zeros进行反量化再进行计算。
这里其实有一点疑惑,就是对权重进行quant的过程只用到了之前得到的per-channel scale和zero,没有体现前述逐block量化过程中对权重的补偿,因为这里用的weight还是原始模型的weight并不是第二步量化过程中损失补偿修改后的weight。
pack函数实现如下。
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
实测下来对Llama2-7b模型进行GPTQ量化在4090上耗时11min左右,速度还行,最后一层量化误差也还可以。
二、SmoothQuant
SmoothQuant (https://arxiv.org/abs/2211.10438) 也是应用很广泛的LLM量化算法,它对权重和激活值都进行量化,是一个W8A8算法。它发现权重比较容易量化,激活值不易量化,因为有离群值,因此提出了在channel维度上对激活值和权重进行了平滑处理,这样易于量化的方案。本文针对这个算法基于官方Repo进行代码分析。Repo中给出的的generate_act_scales.py
和export_int8_model.py
脚本用于生成一个INT8类型的OPT模型。整体上它也是分成3个步骤:
- 根据校准数据集生成激活值scale。
- 使用激活值scale smooth模型。
- 量化模型。
1.根据校准数据生成激活值scale
首先使用generate_act_scales.py
通过校准数据集统计生成激活值的scale,即max(abs(activation))
,方法也是类似的通过添加hook函数在遍历校准集的过程中计算激活值中的max值并记录到act_scales
中。
2.smooth模型
接着再使用export_int8_model.py使用激活值scale和浮点精度模型生成量化精度模型:
- 加载FP16模型
- 加载激活值scale
- 使用激活值scale smooth FP16模型
最能体现论文思想的应该是其中第3步smooth部分,这是一个attention前的laynorm + attention的smooth实现,计算出smooth scale后对对激活值的缩放前置到前面的layernorm层的weights/bias中,再对fc的weight乘以scales,由此完成激活值和权重的平滑,对应论文中这个公式。第4步重新计算激活值scale和第3步类似。
3.量化模型
最后使用smooth后的模型进行量化:
- 使用smooth后的模型重新计算激活值scale。
- 使用smooth后模型和重新计算的激活值scale生成INT8模型
export_int8_model.py
第5步中生成的Int8OPTForCausalLM是基于一些自定义layer实现的,如下所示,完整代码见https://github.com/mit-han-la... (https://github.com/mit-han-la...)这些layer在项目https://github.com/Guangxuan-...(https://github.com/Guangxuan-...)中定义和实现,底层使用CUTLASS的API实现Linear和BMM,属于比较典型的用法,CUTLASS使用可以参考这篇文章进击的Killua:CUTLASS 基础介绍(https://zhuanlan.zhihu.com/p/...)。
opt.py
linear.cu
三、AWQ
AWQ (https://arxiv.org/abs/2306.00978) 是一种LLM低比特权重量化方法,可以认为是当前SOTA,已经被应用到很多低比特量化框架中。AWQ关注在low bit(INT3/INT4) weight量化(W4A16),主要被应用在linear layer(包含最多的参数)。它核心的贡献:
- 发现weight对模型的重要程度存在极强的不均衡性,1%的参数可能主导的量化过程中损失的性能,假如我们在量化中保护这1%的参数,就能极大程度保护模型性能不受影响,但是混合精度(FP16+低比特)对硬件不友好。
- 用激活值来发现重要weight。
- 对weight进行per-channel的scale同时对激活值除以scale来保护weight。
- 取和激活值相关的值进行grid search,找到那个让量化误差最小的scale。
本文围绕官方代码库(https://github.com/mit-han-la...)进行算法实现的讲解,我们拆成3各部分来讲解,分别是:
- 激活感知的weight缩放、扩大调整。
- 权重量化。
- 量化层推理。
1. 激活感知的weight缩放、扩大调整
根据前文描述在weight量化前,我们需要使用激活值对模型的原始weight进行调整,然后再进行第二步实际的量化,weight缩放调整的完整代码见链接。为了简洁性本文基于Llama 3 8B模型来进行代码讲解,先来回顾下Llama 3的模型结构,首先是embedding层,紧接着是32层DecoderLayer,最后是Linear层的llm_head输出,比较清晰。
model LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(128256, 4096)
(layers): ModuleList(
(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=1024, bias=False)
(v_proj): Linear(in_features=4096, out_features=1024, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=4096, out_features=14336, bias=False)
(up_proj): Linear(in_features=4096, out_features=14336, bias=False)
(down_proj): Linear(in_features=14336, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=128256, bias=False)
)
要利用激活值首先得准备一份校准数据生成并记录激活值内容,下面这段代码就是获取LlamaDecoderLayer第一层的输入数据和参数,作为后面逐层调整的输入数据。
layers = get_blocks(model)
samples = get_calib_dataset(
data=calib_data, tokenizer=enc, n_samples=n_samples, block_size=seqlen
)
samples = torch.cat(samples, dim=0)
inps = []
layer_kwargs = {}
layers[0] = layers[0].cuda()
move_embed(model, "cuda")
# get input and kwargs to layer 0
# with_kwargs is only supported in PyTorch 2.0
# use this Catcher hack for now
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps.append(inp)
layer_kwargs.update(kwargs)
raise ValueError # early exit to break later inference
# patch layer 0 to catch input and kwargs
layers[0] = Catcher(layers[0])
try:
model(samples.to(next(model.parameters()).device))
except ValueError: # work with early exit
pass
del samples
layers[0] = layers[0].module # restore
inps = inps[0]
layers[0] = layers[0].cpu()
move_embed(model, "cpu")
gc.collect()
torch.cuda.empty_cache()
接下来就是逐层地去计算需要调整的weight,每一层的输出会作为下一层的输入,在LlamaDecoderLayer内部使用hook的方式来记录每一线性子层的input_feature,和GPTQ的做法类似。
layer = layers[i]
layer = layer.cuda()
named_linears = get_named_linears(layer)
# firstly, get input features of all linear layers
def cache_input_hook(m, x, y, name, feat_dict):
x = x[0]
x = x.detach().cpu()
feat_dict[name].append(x)
input_feat = defaultdict(list)
handles = []
for name in named_linears:
handles.append(
named_linears[name].register_forward_hook(
functools.partial(cache_input_hook, name=name, feat_dict=input_feat)
)
)
inps = inps.to(next(layer.parameters()).device) # in case multi-gpu
# get output as next layer's input
inps = layer(inps, **layer_kwargs)[0]
for h in handles:
h.remove()
# now solve for scaling and clipping
input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
# Clear GPU memory
torch.cuda.empty_cache()
然后就可以使用input_feature针对每个线性层进行scale计算,对于llama3模型根据权重和激活值的关系拆成4个子步骤来进行依次处理,分别是[q_proj,k_proj,v_proj],[o_proj],[gate_proj,up_proj],[down_proj]。
elif isinstance(module, LlamaDecoderLayer):
# attention input
scales_list.append(
_auto_get_scale(
prev_op=module.input_layernorm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
],
inp=input_feat["self_attn.q_proj"],
module2inspect=module.self_attn,
kwargs=module_kwargs,
)
)
# attn out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
scales_list.append(
_auto_get_scale(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat["self_attn.o_proj"],
)
)
# fc1
scales_list.append(
_auto_get_scale(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat["mlp.gate_proj"],
module2inspect=module.mlp,
)
)
# fc2
scales_list.append(
_auto_get_scale(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat["mlp.down_proj"],
)
)
在_auto_get_scale中主要是调用_search_module_scale进行grid_search找到最合适的scale,使得调整权重+伪量化后损失最少,对应于论文这个公式,核心的代码如下所示,这部分的代码实现还是比较简洁的,其中w_quantize_func
量化的部分在下个part介绍。
scale求解空间
def _search_module_scale(block, linears2scale: list, x, kwargs={}):
# w: co, ci
# x: n, ci
x = x.to(next(block.parameters()).device)
with torch.no_grad():
org_out = block(x, **kwargs)
if isinstance(org_out, tuple):
org_out = org_out[0]
x_max = get_act_scale(x)
best_error = float("inf")
best_ratio = -1
best_scales = None
n_grid = 20
history = []
org_sd = {k: v.cpu() for k, v in block.state_dict().items()}
for ratio in range(n_grid):
ratio = ratio * 1 / n_grid
scales = x_max.pow(ratio).clamp(min=1e-4).view(-1)
scales = scales / (scales.max() * scales.min()).sqrt()
for fc in linears2scale:
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
fc.weight.data = w_quantize_func(fc.weight.data) / (scales.view(1, -1))
out = block(x, **kwargs)
if isinstance(out, tuple):
out = out[0]
loss = (
(org_out - out).float().pow(2).mean().item()
) # float prevents overflow
history.append(loss)
is_best = loss < best_error
if is_best:
best_error = loss
best_ratio = ratio
best_scales = scales
block.load_state_dict(org_sd)
if best_ratio == -1:
print(history)
raise Exception
# print(best_ratio)
best_scales = best_scales.view(-1)
assert torch.isnan(best_scales).sum() == 0, best_scales
return best_scales.detach()
scale计算完成后,需要把它应用在每个线性层和它的前一层上,针对layernorm+linear和linear+linear的不同组合处理上大体类似,这里给出ln+linear的例子,可以看到ln层的weight和bias都除以了scale,linear层的weight都乘以了scale,由此便完成了模型权重的调整。
def scale_ln_fcs(ln, fcs, scales):
if not isinstance(fcs, list):
fcs = [fcs]
scales = scales.to(ln.weight.device)
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)
for fc in fcs:
fc.weight.mul_(scales.view(1, -1))
for p in ln.parameters():
assert torch.isnan(p).sum() == 0
for fc in fcs:
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
2. 权重量化
在权重完成调整后就可以开始进行量化了,AWQ也是逐层对Linear层进行权重量化,主体流程如下:
- 先伪量化得到伪量化的权重、量化scales和zeropoint,这里最重要的是用于后续per-channel scales和zeropoint
- 利用scales和zero来创建自定义的量化线性层Module
WQLinear
,把模型中的Linear
层替换为WQLinear
层。
module.cuda()
module.weight.data, scales, zeros = pseudo_quantize_tensor(
module.weight.data, n_bit=w_bit, get_scale_zp=True, **q_config
)
q_linear = WQLinear.from_linear(
module, w_bit, q_config["q_group_size"], False, scales, zeros
)
module.cpu()
q_linear.to(next(layer.parameters()).device)
set_op_by_name(layer, name, q_linear)
torch.cuda.empty_cache()
gc.collect()
伪量化的实现中规中矩,这里用的还是min-max方法来计算scales,值得注意的是这里可以指定量化的group_size从而把计算min-max的范围控制的更小,这样有利用保持精度但同时对计算量要求更大了。
def pseudo_quantize_tensor(
w, n_bit=8, zero_point=True, q_group_size=-1, inplace=False, get_scale_zp=False
):
org_w_shape = w.shape
if q_group_size > 0:
assert org_w_shape[-1] % q_group_size == 0
w = w.reshape(-1, q_group_size)
assert w.dim() == 2
if zero_point:
max_val = w.amax(dim=1, keepdim=True)
min_val = w.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
min_int = 0
scales = (max_val - min_val).clamp(min=1e-5) / max_int
zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
else: # we actually never used this
assert min_val is None
max_val = w.abs().amax(dim=1, keepdim=True)
max_val = max_val.clamp(min=1e-5)
max_int = 2 ** (n_bit - 1) - 1
min_int = -(2 ** (n_bit - 1))
scales = max_val / max_int
zeros = 0
assert torch.isnan(scales).sum() == 0
assert torch.isnan(w).sum() == 0
if inplace:
(
(w.div_(scales).round_().add_(zeros)).clamp_(min_int, max_int).sub_(zeros)
).mul_(scales)
else:
w = (
torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros
) * scales
assert torch.isnan(w).sum() == 0
w = w.reshape(org_w_shape)
if get_scale_zp:
return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
else:
return w
得到scale和zero后就可以对浮点权重进行真正的量化并保存4bit的量化结果,这里复杂的不是量化过程而是量化后4bit pack保存的环节,即代码中量化后的int32类型的intweight
到int16类型的awq_linear.qweight
转换,是通过pack_intweight
函数完成的。
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[:, idx // group_size])
/ qscales[:, idx // group_size]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
# intweight = intweight.t().contiguous()
intweight = intweight.to(dtype=torch.int32)
awq_linear.qweight = pack_intweight(
intweight.contiguous(), interleave=4, kstride=64
)
实现pack_intweight
函数的开发应该是个pytorch好手,通过一系列的reshape
、transpose
和或运算把int32结果作为int4编码压缩到了int16的存储格式中,代码如下所示。这里给出了一个简单数据示例,通过这种方式存储的qweight
在后续加载过程中可以一次高效地由float4(128bit)格式指令读取32个int4权重进行反量化和矩阵乘计算。
def pack_intweight(unpacked_qweight, interleave, kstride):
# unpacked_qweight: [N, K]
N = unpacked_qweight.shape[0]
K = unpacked_qweight.shape[1]
Packed_Kernel = unpacked_qweight.cpu().numpy().reshape(N, K // 32, 32)
# np.arange(32).reshape(4, 4, 2).transpose(1, 0, 2) => [0, 1, 8, 9, 16, 17, 24, 25, ...]
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 3, 2, 4)
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 32)
# reorder each 8 weights for fast dequantization
# [0, 1, 2, 3, 4, 5, 6, 7] => [0, 2, 4, 6, 1, 3, 5, 7]
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 8)
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 2, 4, 3)
Packed_Kernel = Packed_Kernel.reshape(N, K)
# interleaving every four rows
Packed_Kernel = Packed_Kernel.reshape(
N // interleave, interleave, K // kstride, kstride
)
# N // 4, K // 64, 4, 64
Packed_Kernel = Packed_Kernel.transpose(0, 2, 1, 3)
Packed_Kernel = Packed_Kernel.reshape(
N // interleave, K // kstride, kstride, interleave
)
# Packing -> (N // 4, K // 64, 64)
# >>> pack[...,0]
# array([[[ 0, 1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35,
# 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71,
# 96, 97, 98, 99, 100, 101, 102, 103, 128, 129, 130, 131,
# 132, 133, 134, 135, 160, 161, 162, 163, 164, 165, 166, 167,
# 192, 193, 194, 195, 196, 197, 198, 199, 224, 225, 226, 227,
# 228, 229, 230, 231]]])
# >>> pack[...,1]
# array([[[ 8, 9, 10, 11, 12, 13, 14, 15, 40, 41, 42, 43,
# 44, 45, 46, 47, 72, 73, 74, 75, 76, 77, 78, 79,
# 104, 105, 106, 107, 108, 109, 110, 111, 136, 137, 138, 139,
# 140, 141, 142, 143, 168, 169, 170, 171, 172, 173, 174, 175,
# 200, 201, 202, 203, 204, 205, 206, 207, 232, 233, 234, 235,
# 236, 237, 238, 239]]])
# >>> pack[...,2]
# array([[[ 16, 17, 18, 19, 20, 21, 22, 23, 48, 49, 50, 51,
# 52, 53, 54, 55, 80, 81, 82, 83, 84, 85, 86, 87,
# 112, 113, 114, 115, 116, 117, 118, 119, 144, 145, 146, 147,
# 148, 149, 150, 151, 176, 177, 178, 179, 180, 181, 182, 183,
# 208, 209, 210, 211, 212, 213, 214, 215, 240, 241, 242, 243,
# 244, 245, 246, 247]]])
# >>> pack[...,3]
# array([[[ 24, 25, 26, 27, 28, 29, 30, 31, 56, 57, 58, 59,
# 60, 61, 62, 63, 88, 89, 90, 91, 92, 93, 94, 95,
# 120, 121, 122, 123, 124, 125, 126, 127, 152, 153, 154, 155,
# 156, 157, 158, 159, 184, 185, 186, 187, 188, 189, 190, 191,
# 216, 217, 218, 219, 220, 221, 222, 223, 248, 249, 250, 251,
# 252, 253, 254, 255]]])
Packed_Kernel = (
Packed_Kernel[..., 0]
| (Packed_Kernel[..., 1] << 4)
| (Packed_Kernel[..., 2] << 8)
| (Packed_Kernel[..., 3] << 12)
)
# reshape to (N // 4, K), FP16 format
Packed_Kernel = Packed_Kernel.reshape(N // interleave, K)
qweight = (
torch.tensor(Packed_Kernel.astype("int16"))
.to(unpacked_qweight.device)
.contiguous()
)
return qweight
3. 量化层推理
在加载了量化后的WQLinear表示后就可以进行实际推理了,代码库中实现了相应的CUDA Kernel算子来加速推理过程,这里以gemv_forward_cuda_new
举例来说明,这个函数实现了量化后Int4权重和向量乘积的结果,代码中的注释非常详细可读性很好,它的实现参考了TensorRT-LLM (https://github.com/NVIDIA/Ten...) 中的代码,算是比较中规中矩。其中反量化函数dequantize_s4_to_fp16x2
的实现也没有重复造轮子,参考了FasterTransformer(https://github.com/NVIDIA/Fas...)中cutlass_extention关于重叠格式转换(s4_to_fp16x2)的代码,几乎全是内联汇编指令,以后有需要也可以借鉴借鉴,完整代码详见dequantize.cuh(https://github.com/mit-han-la...)。
template <int NPerBlock, int Batch, int BlockSize, int GroupSize>
__global__ void gemv_kernel(
const half* inputs, const uint32_t* weight, const half* scales, const half* zeros, half* outputs,
const int IC, const int OC)
{
const int kStride = 64;
const int kElemsPerThread = MEM_ACCESS_SIZE / 4;
const int kThreadsNumPerTile = kStride / kElemsPerThread;
// assert(MEM_ACCESS_SIZE == 128);
static constexpr int kShuffleSize = 32;
static constexpr int kShuffleBasicTile = 2;
static constexpr int kShuffleContinous = 4;
static constexpr int kShuffleStrided = 4;
constexpr int Num = NPerBlock * Batch;
constexpr int kInterleave = 4;
half local_inputs[kElemsPerThread];
uint32_t local_qweights[MEM_ACCESS_SIZE / 32];
half half_weight_buffer[kElemsPerThread];
half dequantized_weight[kElemsPerThread * NPerBlock];
half local_scale[NPerBlock];
half local_scaled_zeros[NPerBlock];
half psum[Num];
for (int i = 0; i < Num; ++i)
psum[i] = static_cast<half>(0.f);
extern __shared__ uint8_t shmem[];
float(*out_smem)[Num * kInterleave] = reinterpret_cast<float(*)[Num * kInterleave]>(shmem);
const int blk_row_offset = blockIdx.x * NPerBlock * kInterleave;
const int thd_row_offset = (threadIdx.x / kThreadsNumPerTile) % kInterleave;
const int act_k_offset = threadIdx.x / (kThreadsNumPerTile * kInterleave) * kStride
+ (threadIdx.x % kThreadsNumPerTile) * kElemsPerThread;
const int group_offset = act_k_offset / GroupSize;
// TODO: use make_divisible
const uint32_t* blk_weight_ptr = weight + blk_row_offset * IC / PACK_FACTOR;
const half* scale_ptr = scales + blk_row_offset + thd_row_offset + group_offset * OC;
const half* zeros_ptr = zeros + blk_row_offset + thd_row_offset + group_offset * OC;
const half* inputs_ptr = inputs + act_k_offset;
const int act_forward_step = BlockSize * kElemsPerThread / kInterleave;
const int scale_forward_step = act_forward_step / GroupSize * OC;
// Main loop iteration, each block completes the outputs for several OCs
for (int kk = threadIdx.x * kElemsPerThread; kk < IC * kInterleave; kk += BlockSize * kElemsPerThread)
{
// Load qweight, scales and scaled_zeros
#pragma unroll
for (int idx = 0; idx < NPerBlock; ++idx)
{
// use float4 to load weights, each thread load 32 int4 numbers (1 x float4, 128 bit)
*((float4*)(local_qweights)) =
*((float4*)(blk_weight_ptr + (idx * kInterleave * IC + kk)/ PACK_FACTOR));
local_scale[idx] = *(scale_ptr + idx * kInterleave);
local_scaled_zeros[idx] = *(zeros_ptr + idx * kInterleave);
// Map int4 qweight to fp format
#pragma unroll
for (int i = 0; i < MEM_ACCESS_SIZE / 32; ++i)
{
// Converts 32 bits (8 x int4) to 8 fp16
dequantize_s4_to_fp16x2(*reinterpret_cast<half2 *>(local_qweights + i), reinterpret_cast<uint4 *>(half_weight_buffer + i * PACK_FACTOR));
}
// Dequantize (apply s/z) and shuffle elements to match the weight packing format
#pragma unroll
for (int i = 0; i < kShuffleContinous; ++i)
{
#pragma unroll
for (int j = 0; j < kShuffleStrided; ++j)
{
half2 w =
*reinterpret_cast<half2*>(
half_weight_buffer + (i + j * kShuffleContinous)* kShuffleBasicTile
);
w = __hfma2(w, __half2half2(local_scale[idx]), __half2half2(local_scaled_zeros[idx]));
dequantized_weight[((i * kShuffleStrided + j) * kShuffleBasicTile + 0)
* NPerBlock + idx]
= w.x;
dequantized_weight[((i * kShuffleStrided + j) * kShuffleBasicTile + 1)
* NPerBlock + idx]
= w.y;
}
}
}
#pragma unroll
for (int batch_idx = 0; batch_idx < Batch; ++batch_idx)
{
const half* local_inputs_ptr = inputs_ptr + batch_idx * IC;
#pragma unroll
for (int idx = 0; idx < kElemsPerThread / 8; ++idx)
{
// load activation, 8 halves (128 bits) / step.
*((float4*)(local_inputs + idx * 8)) = *((float4*)(local_inputs_ptr + idx * 8));
}
// Perform the MACs
#pragma unroll
for (int x = 0; x < NPerBlock / 2; ++x)
{
#pragma unroll
for (int y = 0; y < kElemsPerThread; ++y)
{
*reinterpret_cast<half2*>(psum + batch_idx * NPerBlock + x * 2)
= __hfma2(*reinterpret_cast<half2*>(dequantized_weight + y * NPerBlock + x * 2),
__half2half2(local_inputs[y]),
*reinterpret_cast<half2*>(psum + batch_idx * NPerBlock + x * 2));
}
}
}
inputs_ptr += act_forward_step;
scale_ptr += scale_forward_step;
zeros_ptr += scale_forward_step;
}
warp_reduce<Num, WARP_SIZE>(psum, out_smem);
// Num * Interleave = batch * NPerBlock * Interleave -> 1 thread_block write back num
for (int i = threadIdx.x; i < Num * kInterleave; i += BlockSize)
{
int batch_idx = i / (NPerBlock * kInterleave);
int oc_idx = i % (NPerBlock * kInterleave);
float acc = 0.f;
for (int j = 0; j < BlockSize / WARP_SIZE; ++j)
{
acc += out_smem[j][i];
}
outputs[batch_idx * OC + blk_row_offset + oc_idx] = static_cast<half>(acc);
}
}
笔者在Llama3 8B模型上测wikitext数据集,量化后PPL从6.135(FP16)上升到6.532(INT4+g128),比论文中Llama2的效果要差一些;GTX-4090+CUDA12.2上单卡推理耗时0.3224 秒下降到0.2276秒,效果看着还行。
The End
作者:进击的Killua
来源:GiantPandaCV
推荐阅读
- LLM PTQ量化经典研究解析
- PipeFusion:如何用PCIe互联GPU 低成本并行推理扩散模型
- I-LLM:首次实现了LLM全整形量化,精度超过Smooth/Omini/AffineQuant
- 原理&图解vLLM Automatic Prefix Cache首Token时延优化
欢迎大家点赞留言,更多Arm技术文章动态请关注极术社区嵌入式客栈专栏欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。