baron · 7月16日

ATF代码学习篇-一篇就够了

1、ATF里都有什么?

最初的功能很简单:

  • cpu_context的保存和恢复,即: 双系统的切换
  • 电源管理、PSCI等

但是随着技术的发展,功能也越来越多,越来越复杂,以下列举了当前的部分功能:

  • 安全世界的初始化,例如异常向量表、一些控制寄存器和中断寄
  • CPU reset和power down的时序。包括Arm DynamIQ cpu的支持。
  • 标准的system IP的驱动,例如Generic Interrupt Controller (GIC), Cache Coherent Interconnect (CCI), Cache Coherent Network (CCN), Network Interconnect (NIC) and TrustZone Controller (TZC).
  • 一种通用的SCMI驱动程序, 适用于电源控制接口,例如ARM SYSTEM Control Processor(SCP)
  • smc处理,using an EL3 runtime services framework
  • PSCI库的支持,用于CPU/Cluster/system的电源管理,这个库集成到了aarch64 el3的runtime中,也适用于aarch32 el3
  • secure monitor代码,用于world切换、中断routing
  • SPDs for the OP-TEE Secure OS, NVIDIA Trusted Little Kernel and Trusty Secure OS
  • SecureBoot实现
  • 预集成TBB与Arm CryptoCell产品,利用其硬件Root的信任和加密加速服务。

如需更详细,请参考《ATF里面都有什么?》 一文

2、ATF的编译

不同平台之间的设计肯定都是不一样的,但大多数类似如下,请注意 RESET_TO_BL31=1,表示该ATF从BL31启动。

make -C $DIRPATH RESET_TO_BL31=1 PLAT=xxx clean
make -C $DIRPATH RESET_TO_BL31=1 PLAT=xxx HIGHADDR_DEVICE=1 all

3、ATF的启动

废话不多说,直接上图,请自行理解:BL1 BL2 BL31 BL32 BL33的概念、EL3 S-EL1 NS-EL1的概念。

image.png

4、进入ATF的和退出ATF方式

透过事务看本质, 进入和退出ATF,就是就是EL等级切换的过程,那么EL等级都是怎么切换的呢?通过下面一张图就可以说明这一切:

image.png

(事实上除了以上同步异常指令,如果是触发异步异常,也会trapped到ATF)

(1)、进入ATF的方式

进入ATF的方式触发异常:同步异常SMC、异步异常(irq,fiq)

  • ➨ 如果是同步异常,那么一定是在linux或tee中发生了smc调用,此时进入跳转ATF中异常向量表中的同步异常程序smc_handler64或smc_handler32

    在该程序中,解析smc id,来选择跳转到具体哪一个rt-svc(runtime service)

  • ➨如果是异步异常,那么一定是触发了irq或fiq或serror中断等,此时进入跳转ATF中异常向量表中的异步异常程序,进而跳转到响应的中断处理函数.

    在ATF中仅实现irq_aarch64、fiq_aarch64、irq_aarch32、fiq_aarch32 四个异常中断处理函数

vector_entry irq_aarch64
    check_and_unmask_ea
    handle_interrupt_exception irq_aarch64
end_vector_entry irq_aarch64

vector_entry fiq_aarch64
    check_and_unmask_ea
    handle_interrupt_exception fiq_aarch64
end_vector_entry fiq_aarch64

vector_entry irq_aarch32
    check_and_unmask_ea
    handle_interrupt_exception irq_aarch32
end_vector_entry irq_aarch32

vector_entry fiq_aarch32
    check_and_unmask_ea
    handle_interrupt_exception fiq_aarch32
end_vector_entry fiq_aarch32

在中断函数中,先调用plat_ic_get_pending_interrupt_type获取interrupt_type,其实就是通过读取寄存器read_icc_hppir0_el1() ,判断中断是从那里来的,然后返回下面三种interrupt_type:

  • define INTR_TYPE_S_EL1 U(0)

  • define INTR_TYPE_EL3 U(1)

  • define INTR_TYPE_NS U(2)

有了type,再get_interrupt_type_handler获取handler程序,进而跳转到相应的handler程序。

ATF中中断的注册(这三种类型的handler程序的注册),以INTR_TYPE_S_EL1为例:

在开机bl32_main调用opteed_setup()时,将opteed_sel1_interrupt_handler()函数注册成了INTR_TYPE_S_EL1类型中断,同时也会将REE(Linux)使用的SCR_EL3.FIQ配置成1,也意味着当CPU运行在TEE时,来了一个secure group1的中断,此中断在REE中被标记FIQ后将被target到EL3,进入EL3(ATF)的中断处理函数,也就是刚才注册的opteed_sel1_interrupt_handler()函数,在该函数中,会将cpu切换到TEE中,去处理这个中断;

(2)、退出ATF的方式

进入EL3(ATF)的方式触发异常:ERET指令、或是主动修改PSTATE寄存器

在ATF中执行smc_handler或中断handler结束后,会调用el3_exit,el3_exit会调用ERET指令,恢复Secure或non-secure的PC指针和PSTATE,回到secure EL1或non-secure EL1.

下图是一个smc进入ATF,处理完任务后再返回EL1的过程:

image.png

5、ATF中向量表的介绍

请参考《Linux Kernel/optee/ATF等操作系统的异常向量表的速查》 一文

6、ATF中栈的设置

请参考《思想解读:TF-A(ATF)中栈指针和栈内存的设计思想解读》 一文

7、ATF中寄存器的保存和恢复

请参考《TF-A代码阅读: 双系统切换时是如何保存寄存器的(cpu_context介绍)》 一文

8、ATF的rt_svc介绍(runtime service)

image.png

(1)、SMC Calling convention文档

image.png

我们重点看下这张表,对应smc id的定义

  • bit31决定是fast call,还是std call(yield对应的就是std call)
  • bit30表示是以32位传参,还是以64位传参, 注意我们看了optee在linux的driver,都是以32位方式
  • bit29:24 决定服务的类型
  • bit23:16 reserved
  • bit15:0 每种call类型下,表示range

bit31、bit30、bit23:16、bit15:0 都是很好理解,我们来讲一下bit29:24
在ATF中定义rt_svc(runtime service)时,需按照该文档的描述来定义

例如在opteed_main.c中,定义了一个service,它的call类型是OEN_TOS_START–OEN_TOS_END,对应的恰好是bit29:24 = 50–63

DECLARE_RT_SVC(
    opteed_fast,

    OEN_TOS_START,
    OEN_TOS_END,
    SMC_TYPE_FAST,
    opteed_setup,
    opteed_smc_handler
);

那么我们在linux kernel中,调用smc时的smc id的bit29:24需要等于50,那么此次的smc调用才会调用到这个runtime service的handler程序

例如在arm_arch_svc_setup.c中,定义了一个service,它的call类型是OEN_ARM_START–OEN_ARM_END,对应的恰好是bit29:24 = 0–0

/* Register Standard Service Calls as runtime service */
DECLARE_RT_SVC(
    arm_arch_svc,
    OEN_ARM_START,
    OEN_ARM_END,
    SMC_TYPE_FAST,
    NULL,
    arm_arch_svc_smc_handler
);

那么我们在linux kernel中,调用smc时的smc id的bit29:24需要等于0,那么此次的smc调用才会调用到这个runtime service的handler程序

例如mtk代码中,mtk_sip_svc.c中,定义了一个service,它的call类型是OEN_SIP_START–OEN_SIP_END,对应的恰好是bit29:24 = 2–2

/* Define a runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
    mediatek_sip_svc,
    OEN_SIP_START,
    OEN_SIP_END,
    SMC_TYPE_FAST,
    NULL,
    sip_smc_handler
);

那么我们在linux kernel中,调用smc时的smc id的bit29:24需要等于2,那么此次的smc调用才会调用到这个runtime service的handler程序

(2)、DECLARE_RT_SVC的使用

DECLARE_RT_SVC是一个宏,用于定义一组service,例如在opteed_main.c中的使用

/* Define an OPTEED runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
    opteed_fast,
    OEN_TOS_START,
    OEN_TOS_END,
    SMC_TYPE_FAST,
    opteed_setup,
    opteed_smc_handler
);

/* Define an OPTEED runtime service descriptor for yielding SMC calls */
DECLARE_RT_SVC(
    opteed_std,
    OEN_TOS_START,
    OEN_TOS_END,
    SMC_TYPE_YIELD,
    NULL,
    opteed_smc_handler
);

其中OEN_TOS_START和OEN_TOS_END、SMC_TYPE_FAST和SMC_TYPE_YIELD都是按照SMC Calling convention文档来定义的

#define OEN_ARM_START            U(0)
#define OEN_ARM_END            U(0)
#define OEN_CPU_START            U(1)
#define OEN_CPU_END            U(1)
#define OEN_SIP_START            U(2)
#define OEN_SIP_END            U(2)
#define OEN_OEM_START            U(3)
#define OEN_OEM_END            U(3)
#define OEN_STD_START            U(4)    /* Standard Service Calls */
#define OEN_STD_END            U(4)
#define OEN_STD_HYP_START        U(5)    /* Standard Hypervisor Service calls */
#define OEN_STD_HYP_END            U(5)
#define OEN_VEN_HYP_START        U(6)    /* Vendor Hypervisor Service calls */
#define OEN_VEN_HYP_END            U(6)
#define OEN_TAP_START            U(48)    /* Trusted Applications */
#define OEN_TAP_END            U(49)
#define OEN_TOS_START            U(50)    /* Trusted OS */
#define OEN_TOS_END            U(63)
#define OEN_LIMIT            U(64)

#define SMC_TYPE_FAST            ULL(1)
#define SMC_TYPE_YIELD            ULL(0)

SMC_TYPE_FAST和SMC_TYPE_YIELD也是根据SMC Calling convention文档定义

(3)、DECLARE_RT_SVC的定义

在runtime_svc.h中,其实就是在section(“rt_svc_descs”)段中定义了一个全局变量.

/*
 * Convenience macros to declare a service descriptor
 */
#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch)    \
    static const rt_svc_desc_t __svc_desc_ ## _name            \
    __section("rt_svc_descs") __used = {            
        .start_oen = (_start),                \
        .end_oen = (_end),                
        .call_type = (_type),                
        .name = #_name,                    \
        .init = (_setup),                
        .handle = (_smch)                
    }

section “rt_svc_descs”在RT_SVC_DESCS宏中

#define RT_SVC_DESCS                    
    . = ALIGN(STRUCT_ALIGN);            
    __RT_SVC_DESCS_START__ = .;            
    KEEP(*(rt_svc_descs))                
    __RT_SVC_DESCS_END__ = .;

而在rodata_common的宏中,定义了RT_SVC_DESCS

#define RODATA_COMMON                    
    RT_SVC_DESCS                    
    FCONF_POPULATOR                    
    PMF_SVC_DESCS                    
    PARSER_LIB_DESCS                
    CPU_OPS                        
    GOT                        
    BASE_XLAT_TABLE_RO

在bl31.ld.S中,将RODATA_COMMON放入了rodata段

.rodata . : {
    __RODATA_START__ = .;
    *(SORT_BY_ALIGNMENT(.rodata*))
    RODATA_COMMON
    /* Place pubsub sections for events */
    . = ALIGN(8);
#include <lib/el3_runtime/pubsub_events.h>

    . = ALIGN(PAGE_SIZE);
     __RODATA_END__ = .;
 } >RAM

(4)、在同步异常中smc_handler64,跳转到响应的rt_svc

附上完整代码和注释

smc_handler64:
    /* NOTE: The code below must preserve x0-x4 */
    /*
     * Save general purpose and ARMv8.3-PAuth registers (if enabled).
     * If Secure Cycle Counter is not disabled in MDCR_EL3 when
     * ARMv8.5-PMU is implemented, save PMCR_EL0 and disable Cycle Counter.
     */
    bl    save_gp_pmcr_pauth_regs

#if ENABLE_PAUTH
    /* Load and program APIAKey firmware key */
    bl    pauth_load_bl31_apiakey
#endif

    /*
     * Populate the parameters for the SMC handler.
     * We already have x0-x4 in place. x5 will point to a cookie (not used
     * now). x6 will point to the context structure (SP_EL3) and x7 will
     * contain flags we need to pass to the handler.
     */
    mov    x5, xzr
    mov    x6, sp    
    /*
     * Restore the saved C runtime stack value which will become the new
     * SP_EL0 i.e. EL3 runtime stack. It was saved in the 'cpu_context'
     * structure prior to the last ERET from EL3.
     */
    ldr    x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]

    /* Switch to SP_EL0 */
    msr    spsel, #MODE_SP_EL0

    /*
     * Save the SPSR_EL3, ELR_EL3, & SCR_EL3 in case there is a world
     * switch during SMC handling.
     * TODO: Revisit if all system registers can be saved later.
     */
    mrs    x16, spsr_el3
    mrs    x17, elr_el3
    mrs    x18, scr_el3
    stp    x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
    str    x18, [x6, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]

    /* Copy SCR_EL3.NS bit to the flag to indicate caller's security */
    bfi    x7, x18, #0, #1

    mov    sp, x12

    /* Get the unique owning entity number */
    ubfx    x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH  ---------------- 获取FUNCID_OEN_SHIFT,对应第一节中的OEN_TOS_START
    ubfx    x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH  ---------------- 获取FUNCID_TYPE_SHIFT,对应第一节中的SMC_TYPE_FAST(fast还是yield,yield其实就是standard)
    orr    x16, x16, x15, lsl #FUNCID_OEN_WIDTH

    /* Load descriptor index from array of indices */
    adrp    x14, rt_svc_descs_indices  ----在runtime_svc_init()中会将所有的section rt_svc_descs段放入rt_svc_descs_indices数组,这里获取该数组地址
    add    x14, x14, :lo12:rt_svc_descs_indices
    ldrb    w15, [x14, x16]   ---找到rt_svc在rt_svc_descs_indices数组中的index

    /* Any index greater than 127 is invalid. Check bit 7. */
    tbnz    w15, 7, smc_unknown

    /*
     * Get the descriptor using the index
     * x11 = (base + off), w15 = index    -------------------------重要的注释
     *
     * handler = (base + off) + (index << log2(size))  ------ 这句注释特别重要,整段汇编看不懂没关系,这句注释看懂就行
     */
    adr    x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE)
    lsl    w10, w15, #RT_SVC_SIZE_LOG2
    ldr    x15, [x11, w10, uxtw]    ------------------------------这句话对应的就是上述注释:handler = (base + off) + (index << log2(size))

    /*
     * Call the Secure Monitor Call handler and then drop directly into
     * el3_exit() which will program any remaining architectural state
     * prior to issuing the ERET to the desired lower EL.
     */
#if DEBUG
    cbz    x15, rt_svc_fw_critical_error
#endif
    blr    x15     -------------------------------------跳转到handler

    b    el3_exit

(5)、smc在驱动中的调用

在optee_smc.h中,我们可以查看linux kernel中给driver定义的smc的类型有:

首先是两个宏,一个用于定义fast call,一个用于定义std call

#define OPTEE_SMC_STD_CALL_VAL(func_num) \
    ARM_SMCCC_CALL_VAL(ARM_SMCCC_STD_CALL, ARM_SMCCC_SMC_32, \
               ARM_SMCCC_OWNER_TRUSTED_OS, (func_num))
#define OPTEE_SMC_FAST_CALL_VAL(func_num) \
    ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_32, \
               ARM_SMCCC_OWNER_TRUSTED_OS, (func_num))

std call只有两个cmd,一个用于正向调用,一个用于rpc调用

#define OPTEE_SMC_FUNCID_RETURN_FROM_RPC    3
#define OPTEE_SMC_CALL_RETURN_FROM_RPC \
    OPTEE_SMC_STD_CALL_VAL(OPTEE_SMC_FUNCID_RETURN_FROM_RPC)

#define OPTEE_SMC_FUNCID_CALL_WITH_ARG OPTEE_MSG_FUNCID_CALL_WITH_ARG
#define OPTEE_SMC_CALL_WITH_ARG \
    OPTEE_SMC_STD_CALL_VAL(OPTEE_SMC_FUNCID_CALL_WITH_ARG)

fast call有5个分别用于: get_os_uuid、get_shm_config、exchange_capabilities、disable_shm_cache、enable_shm_cache

#define OPTEE_SMC_FUNCID_GET_OS_UUID OPTEE_MSG_FUNCID_GET_OS_UUID
#define OPTEE_SMC_CALL_GET_OS_UUID \
    OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_GET_OS_UUID)

#define OPTEE_SMC_FUNCID_GET_SHM_CONFIG    7
#define OPTEE_SMC_GET_SHM_CONFIG \
    OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_GET_SHM_CONFIG)

#define OPTEE_SMC_FUNCID_EXCHANGE_CAPABILITIES    9
#define OPTEE_SMC_EXCHANGE_CAPABILITIES \
    OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_EXCHANGE_CAPABILITIES)

#define OPTEE_SMC_FUNCID_DISABLE_SHM_CACHE    10
#define OPTEE_SMC_DISABLE_SHM_CACHE \
    OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_DISABLE_SHM_CACHE)

#define OPTEE_SMC_FUNCID_ENABLE_SHM_CACHE    11
#define OPTEE_SMC_ENABLE_SHM_CACHE \
    OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_ENABLE_SHM_CACHE)

(6)、smc流程下的代码分析

image.png

关注"Arm精选"公众号,备注进ARM交流讨论区。
图片1.png

推荐阅读
关注数
9456
内容数
200
以易懂、渐进、有序的方式,深入探讨ARMv8/ARMv9架构的核心概念。我们将从基础知识开始,逐步深入,覆盖最新的架构,不再纠缠于过时技术。本系列内容包含但不限于ARM基础、SOC芯片基础、Trustzone、gic、异常和中断、AMBA、Cache、MMU等内容,并将持续更新。
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息