HackforFun · 2020年01月06日

在 RK3399 上部署 Tengine AI 框架

在 RK3399 上部署 Tengine AI 框架

Tengine

Tengine 是 OPEN AI LAB 一款轻量级神经网络推理引擎,它针对 Arm 嵌入式平台进行了专门优化,对 Android、Linux 系统都提供了很好的支持。

而且更加难能可贵的是 Tengine 并不依赖于专用 AI 芯片(即 Tengine 可以利用 GPU、NPU 这些具有专门 AI 加速功能的模块进行 AI 运算,也可以利用通用的 CPU 进行 AI 运算),很多 Arm 平台都可以通过 Tengine 框架对算力进行深度挖掘,从而高效的运行一些 AI 应用。

img

本文就是想描述如何在 RK3399 这一 Arm64 平台上搭建 Tengine AI 推理框架,并运行图像识别相关应用。

这里用的 RK3399 平台是一块基于 RK3399 的 Leez P710 开发板,我在上面移植了基于 Armbian 的 Debian 10 系统,运行的 u-boot 和 linux kernel 都是mainline的。具体过程可以参考这篇文章:在 RK3399 上部署最新的 Linux 5.4 和 U-Boot v2020 .01

编译 Tengine

OPEN AI LAB 在 Github 上提供了开源的 Tengine 版本,并提供了比较详细的参考文档,所以可以直接下载源码,根据文档进行编译。

得益于 RK3399 强大的性能,我们可以直接在 RK3399 上下载代码,进行编译,免去交叉编译的诸多不便。、

  1. 下载源码

    git clone --recurse-submodules https://github.com/OAID/tengine/

    注意 clone 的时候一定要带 --recurse-submodules 这个参数,否则会下载不完整。

  2. 安装依赖

    apt install libprotobuf-dev protobuf-compiler libopencv-dev  pkg-config
  3. 修改配置文件

    在源码的 default_config 目录下提供了基于 arm32、arm64、x86 这三个平台的配置文件。

    RK3399 是 Arm64, 所以对应的配置文件为:arm64_linux_native.config。

    这里要做的修改是,在配置文件中打开 BUILD_SERIALIZER=y 这个选项,否则后面运行的时候可能会遇到Shared library not found: libcaffe-serializer.so: cannot open shared object file: No such file or directory 这个错误。

    img

  4. 编译

    在源码根目录执行如下命令进行编译:

    ./linux_build.sh default_config/arm64_linux_native.config

    img

  5. 下载 model 文件

    运行这些 AI 应用的时候,需要加载对应的 model 文件,这些文件可以从 OPEN AI LAB 提供的网盘里下载:

    https://pan.baidu.com/s/1Ar9334MPeIV1eq4pM1eI-Q , 提取码为 hhgc

    下载完后需要把这些 model 文件放在 Tengine 源码根目录下的 models 文件夹,所有的 model 文件加在一起比较大,我只上传了后面测试需要用到的部分:

    img

  6. 运行 benchmark

    编译完成后默认会在 build/benchmark/bin/ 目录下生成两个供测试用的 benchmark 文件,可以直接执行这两个文件,用来简单的测试,确实是否真正编译成功。

    ./build/benchmark/bin/bench_sqz 
    ./build/benchmark/bin/bench_mobilenet 

    img

编译并运行测试 Demo

Tengine 开放的源码里面还带了几个不错的 图像识别相关的测试 Demo,用来测试和进行 AI 相关的基础学习都很不错。

这些 Demo 的源码在 examples 目录下,在编译之前我们需要修改一个编译脚本 linux_build.sh, 即根据实际情况,正确设置 Tengine 的所在路径,比如我下载编译的 Tengine 代码在 /root/rockdev/tengine 目录下:

640.png

然后在 examples 目录下执行如下命令:

mkdir build
cd build/
../linux_build.sh 
make

img

编译完成,主要有 faster_rcnnlighten_cnnmobilenet_ssdmtcnnssdyolov2YuFaceDetectNet 这几个测试 Demo。

faster_rcnn

Faster rcnn 是大神 Ross B. Girshick 在 RCNN 和 Fast RCNN 的基础上于 2016 年提出的新模型,综合性能更高,检测速度更快。

Tengine 版本的 Demo 对下面的图片进行识别:

img

运行 faster_rcnn 可执行程序,会生成一张对检测到的物体进行标注后的图像:

img

可以看到识别到了 Dog、bicycle、car 三个物体。

YOLO v2

YOLO 全称 You look only once,是 2016 年 CVPR 上发表的一篇目标检测论文。

YOLOV v2 发表于 2017 年的 CVPR 上,论文名称为《YOLO9000: Better, Faster, Stronger》,获得了 CVPR 2017 Best Paper Honorable Mention 大奖。

这里用这个模型来检测和 RCNN 同样的图片:

img

从这张图片看,准确性和 RCNN 相当,但是检测速度却快了 将近 6 倍。

SSD

SSD 全称 Single Shot MultiBox Detector, 是一种 one-stage 的通用物体检测算法,作者 Wei Liu,提出于 2016年。

这里用如下图片做检测:

img

运行结果如下:

img

有点可惜的是把狗狗给识别错了。

mobilenet_ssd

这个是 mobilenet 和 ssd 的结合,对移动设备更友好。

使用和 SSD 同样的图片进行检测:

img

可以看到狗狗检测对了,但是远处有个人漏检了。但是检测速度比 SSD 快了很多。

YuFaceDetectNet

这个是深圳大学于仕琪老师开源的 libfacedetection 的 Tengine 实现版本,libfacedetection 号称最快的人脸检测库。

测试原图如下:

img

测试结果:

MTCNN

MTCNN 是另外一种人脸检测方案,提出于 2016 年。

这里我们采用和 YuFaceDetectNet 同样的图片进行测试:

img

五张脸全部检测到了,而且时间和 YuFaceDetectNet 差距并不大。

写在最后

其实对于 AI 和图像识别来说我是一个门外汉,写这篇文章的目的是想告诉大家如何把 Tengine 这一开源的 AI 框架部署到手边的 Arm 开发板上,以及即使没有 强大的 NPU,GPU,我们也可以进行一些 AI 相关的实践。

如果对 AI 或者图像识别感兴趣,这也许是一个很好入门切入点。

本文首发于公众号:HackforFun

更多原创请扫码关注

推荐阅读
关注数
3510
内容数
57
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息