爱笑的小姐姐 · 2021年08月09日

OpenCV中直线拟合方法解密

直线拟合原理

给出多个点,然后根据这些点拟合出一条直线,这个最常见的算法是多约束方程的最小二乘拟合,如下图所示:

image.png

但是当这些点当中有一个或者几个离群点(outlier)时候,最小二乘拟合出来的直线就直接翻车成这样了:

image.png

原因是最小二乘无法在估算拟合的时候剔除或者降低离群点的影响,于是一个聪明的家伙出现了,提出了基于权重的最小二乘拟合估算方法,这样就避免了翻车。根据高斯分布,离群点权重应该尽可能的小,这样就可以降低它的影响,OpenCV中的直线拟合就是就权重最小二乘完成的,在生成权重时候OpenCV支持几种不同的距离计算方法,分别如下:
image.png

其中DIST\_L2是最原始的最小二乘,最容易翻车的一种拟合方式,虽然速度快点。然后用基于权重的最小二乘估算拟合结果如下:
image.png

函数与实现源码分析

OpenCV中直线拟合函数支持上述六种距离计算方式,函数与参数解释如下:


void cv::fitLine(
         InputArray    points,
         OutputArray   line,
         int   distType,
         double    param,
         double    reps,
         double    aeps
)
  • points是输入点集合
  • line是输出的拟合参数,支持2D与3D
  • distType是选择距离计算方式
  • param 是某些距离计算时生成权重需要的参数
  • reps 是前后两次原点到直线的距离差值,可以看成拟合精度高低
  • aeps是前后两次角度差值,表示的是拟合精度

六种权重的计算更新实现如下:

static void weightL1( float *d, int count, float *w )
{
    int i;


    for( i = 0; i < count; i++ )
    {
        double t = fabs( (double) d[i] );
        w[i] = (float)(1. / MAX(t, eps));
    }
}


static void weightL12( float *d, int count, float *w )
{
    int i;


    for( i = 0; i < count; i++ )
    {
        w[i] = 1.0f / (float) std::sqrt( 1 + (double) (d[i] * d[i] * 0.5) );
    }
}




static void weightHuber( float *d, int count, float *w, float _c )
{
    int i;
    const float c = _c <= 0 ? 1.345f : _c;


    for( i = 0; i < count; i++ )
    {
        if( d[i] < c )
            w[i] = 1.0f;
        else
            w[i] = c/d[i];
    }
}




static void weightFair( float *d, int count, float *w, float _c )
{
    int i;
    const float c = _c == 0 ? 1 / 1.3998f : 1 / _c;


    for( i = 0; i < count; i++ )
    {
        w[i] = 1 / (1 + d[i] * c);
    }
}


static void weightWelsch( float *d, int count, float *w, float _c )
{
    int i;
    const float c = _c == 0 ? 1 / 2.9846f : 1 / _c;


    for( i = 0; i < count; i++ )
    {
        w[i] = (float) std::exp( -d[i] * d[i] * c * c );
    }
}

拟合计算的代码实现:

static void fitLine2D_wods( const Point2f* points, int count, float *weights, float *line )
{
    CV_Assert(count > 0);
    double x = 0, y = 0, x2 = 0, y2 = 0, xy = 0, w = 0;
    double dx2, dy2, dxy;
    int i;
    float t;

    // Calculating the average of x and y...
    if( weights == 0 )
    {
        for( i = 0; i < count; i += 1 )
        {
            x += points[i].x;
            y += points[i].y;
            x2 += points[i].x * points[i].x;
            y2 += points[i].y * points[i].y;
            xy += points[i].x * points[i].y;
        }
        w = (float) count;
    }
    else
    {
        for( i = 0; i < count; i += 1 )
        {
            x += weights[i] * points[i].x;
            y += weights[i] * points[i].y;
            x2 += weights[i] * points[i].x * points[i].x;
            y2 += weights[i] * points[i].y * points[i].y;
            xy += weights[i] * points[i].x * points[i].y;
            w += weights[i];
        }
    }

    x /= w;
    y /= w;
    x2 /= w;
    y2 /= w;
    xy /= w;

    dx2 = x2 - x * x;
    dy2 = y2 - y * y;
    dxy = xy - x * y;

    t = (float) atan2( 2 * dxy, dx2 - dy2 ) / 2;
    line[0] = (float) cos( t );
    line[1] = (float) sin( t );

    line[2] = (float) x;
    line[3] = (float) y;
}

案例:直线拟合

有如下的原图:

image.png
通过OpenCV的距离变换,骨架提取,然后再直线拟合,使用DIST\_L1得到的结果如下:

image.png

OpenCV-C++/Python视频教程30课时,请看B站:

https://www.bilibili.com/video/BV1hM4y1M7vQ (python版本)
本文转自:OpenCV
作者:gloomyfish

推荐阅读

更多嵌入式AI技术相关内容请关注嵌入式AI专栏。
推荐阅读
关注数
18790
内容数
1342
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息