https://www.bilibili.com/vide...
课程logo
Kuiper是太阳系小行星天体带,有兴趣的同学可以自行百度。之所以取这个名字,我是想表达,这个框架是具有一定“边缘”属性,然后希望更多的人像“小行星”一样加入到这个星带中来。
image-20221222214001402
关于维度的预备知识
在Tensor张量中,共有三维数据进行顺序存放,分别是Channels(维度),Rows(行高), Cols(行宽),三维矩阵我们可以看作多个连续的二维矩阵组成,最简单的方法就是使用嵌套的vector数组,但是这种方法非常不利于数据的访问(尤其是内存不连续的问题)修改以及查询,特别是在扩容的时候非常不方便,能满足使用需求。
因此,综合考虑灵活性和开发的难易度,我们会以Armadillo类中的arma::mat(矩阵 matrix)类和arma::cube作为数据管理(三维矩阵)类来实现Tensor 我们库中类的主体,一个cube由多个matrix组成,cube又是Tensor类中的数据实际管理者。
首先我们讲讲Tensor类和Armadillo中两个类的关系,可以从下方图看出Tensor类中的数据均由arma::cube类进行管理扩充,我们设计的类以arma::cube为基础实现了Tensor类,我们主要是提供了更方便的访问方式和对外接口。
arma::cube是一个三维矩阵,分别是通道维度(slices或者channels),行维度(rows)和列维度(cols),请看下图1, 图中是两个5行3列的矩阵,蓝色的区域是数据的实际存储区,灰色和和白色部分仅用作示意,在内存中实际不存在。
一个cube类由多个这样的Matrix组成,图1中表示的情况是arma::cube(2, 5, 3), 表示当前的三维矩阵共有2个矩阵构成,每个矩阵都是5行3列的。如果放在我们项目中会以这形式提供 Tensor tensor(2, 5, 3).
下图2是这种情况下的三维结构图,可以看出一个Cube一共有两个Matrix,也就是共有两个Channel. 一个Channel放一个Matrix. Matrix的行宽均为Rows和Cols.
Tensor方法总览
我们从上面可以知道,我们的Tensor类是对armdillo库中cube类的封装,cube是多个Matrix的集合(二维矩阵的集合),关系图如上图1、图2. 我们在这里对KuiperInfer中Tensor类的方法进行一个总览,其中我们会让大家亲自动手实现两个方法(加粗的两个),只有动手起来才能参与其中。
Tensor类模板
Tensor共有两个类型,一个类型是Tensor<float>,另一个类型是Tensor<uint8_t>, Tensor<uint8_t> 可能会在后续的量化课程中进行使用,目前还暂时未实现,所以在之后的文章中我们以Tensor来指代Tensor<float>.
如何创建一个Tensor
Tensor<float> tensor(3, 5, 3). 在我们的KuiperInfer项目中,我们可以用一个非常简单的方式来创建一个张量实例,在如上的定义中,我们得到了一个通道数量为3,行数(rows)为5,列数(cols)为3的tensor变量。
如何访问Tensor中数据(我们要大家实现的功能)
我们将在这个项目中为Tensor类定义多种访问内部数据的方式。首先要讲的是顺序访问方式,在tensor变量中,我们可以使用tensor.at(0, 1, 2)得到tensor变量中第0通道,第1行,第2列中存放的元素。
另外一种,我们可以使用tensor.index(0)这种方法来得到tensor变量中第0个数据 。我会在作业系统中给予大家充分的提示,让大家准确无误地把代码写出来。从下图中可以看出,tensor.at(0,1,2)就是访问图中对应位置的点。第1个矩阵(channel = 0)中第2行(row = 1),第3列(col=2)中的数据。
再谈谈Tensor类中数据的排布
我们以具体的图片作为例子,来讲讲Tensor中数据管理类arma::cube的数据排布方式,Tensor类是arma::cube对外更方便的接口,所以说armadillo::cube怎么管理内存的,Tensor类就是怎么管理内存的,希望大家的能理解到位。
如下图中的一个Cube,Cube的维度是2,每个维度上存放的是一个Matrix,一个Matrix中的存储空间被用来存放一张图像(lena) . 一个框内(channel) 是一个Matrix,Matrix1存放在Cube第1维度(channel 1)上,Matrix2存放在Cube的第2维度上(channel 2). Matrix1和Matrix2的Rows和Cols均代表着图像的高和宽,在本例中就是512和384.
如果将顺序的一组数据[0,1,2,3,4,5....128]存放到一个大小为4×4的Matrix中,那么大家需要注意一个问题,我们的数据管理类Tensor(arma::cube)是列主序的,这一点和Opencv cv::Mat或者python numpy有一些不同。列主序在内存中的顺序如下表:
作业提示
- git clone https://gitee.com/fssssss/KuiperCourse
- mkdir build
- git checkout second
- cd build
- cmake ..
- make
- Padding作业提示:https://arma.sourceforge.net/docs.html#insert
- Fill作业提示:请看视频提示
作者: 傅莘莘
文章来源:GiantPandaCV
推荐阅读
- Windows 版的3D目标检测框架 smoke PyTorch 实现
- 回顾2022年计算机视觉领域最激动人心的进展
- 量化部署篇 | Vision Transformer应该如何进行PTQ量化?这个方法或许可以参考!
- 自制深度学习推理框架-前言-第一课
- YOLOv6精度提升的又一根稻草,感知量化的重参再设计,QARep值得内卷
更多嵌入式AI干货请关注嵌入式AI专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。