PyTorch Geometric (PyG)是构建图神经网络模型和实验各种图卷积的主要工具。在本文中我们将通过链接预测来对其进行介绍。
链接预测答了一个问题:哪两个节点应该相互链接?我们将通过执行“转换分割”,为建模准备数据。为批处理准备专用的图数据加载器。在Torch Geometric中构建一个模型,使用PyTorch Lightning进行训练,并检查模型的性能。
库准备
Torch 这个就不用多介绍了
Torch Geometric 图形神经网络的主要库,也是本文介绍的重点
PyTorch Lightning 用于训练、调优和验证模型。它简化了训练的操作
Sklearn Metrics和Torchmetrics 用于检查模型的性能。
PyTorch Geometric有一些特定的依赖关系,如果你安装有问题,请参阅其官方文档。
数据准备
我们将使用Cora ML引文数据集。数据集可以通过Torch Geometric访问。
data = tg.datasets.CitationFull(root="data", name="Cora_ML")
默认情况下,Torch Geometric数据集可以返回多个图形。我们看看单个图是什么样子的
data[0]
> Data(x=[2995, 2879], edge_index=[2, 16316], y=[2995])
这里的 X是节点的特征。edge_index是2 x (n条边)矩阵(第一维= 2,被解释为:第0行-源节点/“发送方”,第1行-目标节点/“接收方”)。
链接拆分
我们将从拆分数据集中的链接开始。使用20%的图链接作为验证集,10%作为测试集。这里不会向训练数据集中添加负样本,因为这样的负链接将由批处理数据加载器实时创建。
一般来说,负采样会创建“假”样本(在我们的例子中是节点之间的链接),因此模型学习如何区分真实和虚假的链接。负抽样基于抽样的理论和数学,具有一些很好的统计性质。
首先:让我们创建一个链接拆分对象。
link_splitter = tg.transforms.RandomLinkSplit(
num_val=0.2,
num_test=0.1,
add_negative_train_samples=False,
disjoint_train_ratio=0.8)
disjoint_train_ratio调节在“监督”阶段将使用多少条边作为训练信息。剩余的边将用于消息传递(网络中的信息传输阶段)。
图神经网络中至少有两种分割边的方法:归纳分割和传导分割。转换方法假设GNN需要从图结构中学习结构模式。在归纳设置中,可以使用节点/边缘标签进行学习。本文最后有两篇论文详细讨论了这些概念,并进行了额外的形式化:([1],[3])。
train_g, val_g, test_g = link_splitter(data[0])
> Data(x=[2995, 2879], edge_index=[2, 2285], y=[2995], edge_label=[9137], edge_label_index=[2, 9137])
在这个操作之后,我们有了一些新的属性:
edge_label :描述边缘是否为真/假。这是我们想要预测的。
edge_label_index 是一个2 x NUM EDGES矩阵,用于存储节点链接。
让我们看看样本的分布
th.unique(train_g.edge_label, return_counts=True)
> (tensor([1.]), tensor([9137]))
th.unique(val_g.edge_label, return_counts=True)
> (tensor([0., 1.]), tensor([3263, 3263]))
th.unique(val_g.edge_label, return_counts=True)
> (tensor([0., 1.]), tensor([3263, 3263]))
对于训练数据没有负边(我们将训练时创建它们),对于val/测试集——已经以50:50的比例有了一些“假”链接。
模型
现在我们可以在使用GNN进行模型的构建了一个
class GNN(nn.Module):
def __init__(
self,
dim_in: int,
conv_sizes: Tuple[int, ...],
act_f: nn.Module = th.relu,
dropout: float = 0.1,
*args,
**kwargs):
super().__init__()
self.dim_in = dim_in
self.dim_out = conv_sizes[-1]
self.dropout = dropout
self.act_f = act_f
last_in = dim_in
layers = []
# Here we build subsequent graph convolutions.
for conv_sz in conv_sizes:
# Single graph convolution layer
conv = tgnn.SAGEConv(in_channels=last_in, out_channels=conv_sz, *args, **kwargs)
last_in = conv_sz
layers.append(conv)
self.layers = nn.ModuleList(layers)
def forward(self, x: th.Tensor, edge_index: th.Tensor) -> th.Tensor:
h = x
# For every graph convolution in the network...
for conv in self.layers:
# ... perform node embedding via message passing
h = conv(h, edge_index)
h = self.act_f(h)
if self.dropout:
h = nn.functional.dropout(h, p=self.dropout, training=self.training)
return h
这个模型中值得注意的部分是一组图卷积——在我们的例子中是SAGEConv。SAGE卷积的正式定义为:
v是当前节点,节点v的N(v)个邻居。要了解更多关于这种卷积类型的信息,请查看GraphSAGE[1]的原始论文
让我们检查一下模型是否可以使用准备好的数据进行预测。这里PyG模型的输入是节点特征X的矩阵和定义edge_index的链接。
gnn = GNN(train_g.x.size()[1], conv_sizes=[512, 256, 128])
with th.no_grad():
out = gnn(train_g.x, train_g.edge_index)
out
> tensor([[0.0000, 0.0000, 0.0051, ..., 0.0997, 0.0000, 0.0000],
[0.0107, 0.0000, 0.0576, ..., 0.0651, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0102, ..., 0.0973, 0.0000, 0.0000],
...,
[0.0000, 0.0000, 0.0549, ..., 0.0671, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0166, ..., 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0034, ..., 0.1111, 0.0000, 0.0000]])
我们模型的输出是一个维度为:N个节点x嵌入大小的节点嵌入矩阵。
PyTorch Lightning
PyTorch Lightning主要用作训练,但是这里我们在GNN的输出后面增加了一个Linear层做为预测是否链接的输出头。
class LinkPredModel(pl.LightningModule):
def __init__(
self,
dim_in: int,
conv_sizes: Tuple[int, ...],
act_f: nn.Module = th.relu,
dropout: float = 0.1,
lr: float = 0.01,
*args, **kwargs):
super().__init__()
# Our inner GNN model
self.gnn = GNN(dim_in, conv_sizes=conv_sizes, act_f=act_f, dropout=dropout)
# Final prediction model on links.
self.lin_pred = nn.Linear(self.gnn.dim_out, 1)
self.lr = lr
def forward(self, x: th.Tensor, edge_index: th.Tensor) -> th.Tensor:
# Step 1: make node embeddings using GNN.
h = self.gnn(x, edge_index)
# Take source nodes embeddings- senders
h_src = h[edge_index[0, :]]
# Take target node embeddings - receivers
h_dst = h[edge_index[1, :]]
# Calculate the product between them
src_dst_mult = h_src * h_dst
# Apply non-linearity
out = self.lin_pred(src_dst_mult)
return out
def _step(self, batch: th.Tensor, phase: str='train') -> th.Tensor:
yhat_edge = self(batch.x, batch.edge_label_index).squeeze()
y = batch.edge_label
loss = nn.functional.binary_cross_entropy_with_logits(input=yhat_edge, target=y)
f1 = tm.functional.f1_score(preds=yhat_edge, target=y, task='binary')
prec = tm.functional.precision(preds=yhat_edge, target=y, task='binary')
recall = tm.functional.recall(preds=yhat_edge, target=y, task='binary')
# Watch for logging here - we need to provide batch_size, as (at the time of this implementation)
# PL cannot understand the batch size.
self.log(f"{phase}_f1", f1, batch_size=batch.edge_label_index.shape[1])
self.log(f"{phase}_loss", loss, batch_size=batch.edge_label_index.shape[1])
self.log(f"{phase}_precision", prec, batch_size=batch.edge_label_index.shape[1])
self.log(f"{phase}_recall", recall, batch_size=batch.edge_label_index.shape[1])
return loss
def training_step(self, batch, batch_idx):
return self._step(batch)
def validation_step(self, batch, batch_idx):
return self._step(batch, "val")
def test_step(self, batch, batch_idx):
return self._step(batch, "test")
def predict_step(self, batch):
x, edge_index = batch
return self(x, edge_index)
def configure_optimizers(self):
return th.optim.Adam(self.parameters(), lr=self.lr)
PyTorch Lightning的作用是帮我们简化了训练的步骤,我们只需要配置一些函数即可,我们可以使用以下命令测试模型是否可用
model = LinkPredModel(val_g.x.size()[1], conv_sizes=[512, 256, 128])
with th.no_grad():
out = model.predict_step((val_g.x, val_g.edge_label_index))
训练
对于训练的步骤,需要特殊处理的是数据加载器。
图数据需要特殊处理——尤其是链接预测。PyG有一些专门的数据加载器类,它们负责正确地生成批处理。我们将使用:tg.loader.LinkNeighborLoader,它接受以下输入:
要批量加载的数据(图)。num_neighbors 每个节点在一次“跳”期间加载的最大邻居数量。指定邻居数目的列表1 - 2 - 3 -…-K。对于非常大的图形特别有用。
edge_label_index 哪个属性已经指示了真/假链接。
neg_sampling_ratio -负样本与真实样本的比例。
train_loader = tg.loader.LinkNeighborLoader(
train_g,
num_neighbors=[-1, 10, 5],
batch_size=128,
edge_label_index=train_g.edge_label_index,
# "on the fly" negative sampling creation for batch
neg_sampling_ratio=0.5
)
val_loader = tg.loader.LinkNeighborLoader(
val_g,
num_neighbors=[-1, 10, 5],
batch_size=128,
edge_label_index=val_g.edge_label_index,
edge_label=val_g.edge_label,
# negative samples for val set are done already as ground-truth
neg_sampling_ratio=0.0
)
test_loader = tg.loader.LinkNeighborLoader(
test_g,
num_neighbors=[-1, 10, 5],
batch_size=128,
edge_label_index=test_g.edge_label_index,
edge_label=test_g.edge_label,
# negative samples for test set are done already as ground-truth
neg_sampling_ratio=0.0
)
下面就是训练模型
model = LinkPredModel(val_g.x.size()[1], conv_sizes=[512, 256, 128])
trainer = pl.Trainer(max_epochs=20, log_every_n_steps=5)
# Validate before training - we will see results of untrained model.
trainer.validate(model, val_loader)
# Train the model
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=val_loader)
试验数据核对,查看分类报告和ROC曲线。
with th.no_grad():
yhat_test_proba = th.sigmoid(model(test_g.x, test_g.edge_label_index)).squeeze()
yhat_test_cls = yhat_test_proba >= 0.5
print(classification_report(y_true=test_g.edge_label, y_pred=yhat_test_cls))
结果看起来还不错:
precision recall f1-score support
0.0 0.68 0.70 0.69 1631
1.0 0.69 0.66 0.68 1631
accuracy 0.68 3262
macro avg 0.68 0.68 0.68 3262
weighted avg 0.68 0.68 0.68 3262
ROC曲线也不错
我们训练的模型并不特别复杂,也没有经过精心调整,但它完成了工作。当然这只是一个为了演示使用的小型数据集。
总结
图神经网络尽管看起来很复杂,但是PyTorch Geometric为我们提供了一个很好的解决方案。我们可以直接使用其中内置的模型实现,这方便了我们使用和简化了入门的门槛。
本文代码:
https://avoid.overfit.cn/post/e14c4369776243d68c22c4a2a0346db2
参考:
- Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
- McCormick, C. (2017). Word2Vec Tutorial Part 2 — Negative Sampling.
- Rossi, A., Tiezzi, M., Dimitri, G. M., Bianchini, M., Maggini, M., & Scarselli, F. (2018). Inductive–transductive learning with graph neural networks. In Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 (pp. 201–212). Springer International Publishing.