V 头像

V

4570 声望
他还没有填写个人简介
关注了
0
粉丝数
3
最新动态
  • 发布了文章 ·
    LLM2CLIP:使用大语言模型提升 CLIP 的文本处理,提高长文本理解和跨语言能力

    在人工智能迅速发展的今天,多模态系统正成为推动视觉语言任务前沿发展的关键。CLIP(对比语言-图像预训练)作为其中的典范,通过将文本和视觉表示对齐到共享的特征空间,为图像-文本检索、分类和分割等任务带来了革命性突破。然而其文本编码器的局限性使其在处理复杂长文本和多语言任务时显得力不从心。

    摘要图
  • 发布了文章 ·
    解读双编码器和交叉编码器:信息检索中的向量表示与语义匹配

    在信息检索领域(即从海量数据中查找相关信息),双编码器和交叉编码器是两种至关重要的工具。它们各自拥有独特的工作机制、优势和局限性。本文将深入探讨这两种核心技术。

    摘要图
  • 发布了文章 ·
    使用 Pytorch 构建视觉语言模型(VLM)

    视觉语言模型(Vision Language Model,VLM)正在改变计算机对视觉和文本信息的理解与交互方式。本文将介绍 VLM 的核心组件和实现细节,可以让你全面掌握这项前沿技术。我们的目标是理解并实现能够通过指令微调来执行有用任务的视觉语言模型。

    摘要图
  • 发布了文章 ·
    使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程

    当涉及到图数据时,复杂性是不可避免的。无论是社交网络中的庞大互联关系、像 Freebase 这样的知识图谱,还是推荐引擎中海量的数据量,处理如此规模的图数据都充满挑战。

    摘要图
  • 发布了文章 ·
    SMoA: 基于稀疏混合架构的大语言模型协同优化框架

    在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(Sparse Mixture-of-Agents, SMoA)框架,通过借鉴稀疏专家混合(Sparse Mixture-of-Experts, SMoE)的设计理念,...

    摘要图
  • 发布了文章 ·
    为什么卷积现在不火了:CNN研究热度降温的深层原因分析

    在深度学习领域,卷积神经网络(CNN)曾经是计算机视觉的代名词。自2012年AlexNet在ImageNet竞赛中取得突破性成功以来,CNN在图像识别、目标检测等领域掀起了一场革命。然而,纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。这种变化绝非...

    摘要图
  • 发布了文章 ·
    TSMamba:基于Mamba架构的高效时间序列预测基础模型

    在当今数据驱动的世界中,时间序列预测在多个领域扮演着关键角色。从医疗保健分析师预测患者流量,到金融分析师预测股市趋势,再到气候科学家预测环境变化,准确的时间序列预测都至关重要。然而,传统的预测模型面临着三个主要挑战:

    摘要图
  • 发布了文章 ·
    深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析

    在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。

    摘要图
  • 发布了文章 ·
    基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架

    贝叶斯营销组合建模(Bayesian Marketing Mix Modeling,MMM)作为一种先进的营销效果评估方法,其核心在于通过贝叶斯框架对营销投资的影响进行量化分析。在实践中为确保模型的可靠性和有效性,需要系统地进行模型诊断、分析和比较。本文将重点探讨这些关键环节,包括:

    摘要图
  • 发布了文章 ·
    三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力

    本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。这些机制是GPT-4、Llama等大型语言模型(LLMs)的核心组件。通过理解这些注意力机制,我们可以更好地把握这些模型的工作原理和应用潜力。

    摘要图
  • 发布了文章 ·
    基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例

    近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著进展。这些模型通过在大规模文本数据上进行预训练,能够习得语言的基本特征和语义,从而在各种NLP任务上取得了突破性的表现。为了将预训练的LLM应用于特定领域或任务,通常需要在领域特定的数据集上对模型...

    摘要图
  • 发布了文章 ·
    LLM Graph Transformer知识图谱构建:LangChain转换机制实践

    文本到图谱的转换是一个具有技术挑战性的研究领域,其核心任务是将非结构化文本数据转换为结构化的图谱表示。这种技术虽然由来已久,但随着大型语言模型(LLMs)的发展,其应用范围得到了显著扩展,并逐渐成为主流技术方案之一。

    摘要图
  • 发布了文章 ·
    基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模

    Liquid State Machine (LSM) 是一种 脉冲神经网络 (Spiking Neural Network, SNN) ,在计算神经科学和机器学习领域中得到广泛应用,特别适用于处理 时变或动态数据。它是受大脑自然信息处理过程启发而提出的一种 脉冲神经网络 。

    摘要图
  • 发布了文章 ·
    深入理解多重共线性:基本原理、影响、检验与修正策略

    在数据科学和机器学习领域,构建可靠且稳健的模型是进行准确预测和获得有价值见解的关键。然而当模型中的变量开始呈现出高度相关性时,就会出现一个常见但容易被忽视的问题 —— 多重共线性。多重共线性是指两个或多个预测变量之间存在强相关性,导致模型难以区分它们对目标变量的贡献。如果忽视多重共线性,它会扭曲模型的结...

    摘要图
  • 发布了文章 ·
    特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计

    在机器学习领域,特征工程是提升模型性能的关键步骤。它涉及选择、创建和转换输入变量,以构建最能代表底层问题结构的特征集。然而,在许多实际应用中,仅仅依靠统计相关性进行特征选择可能导致误导性的结果,特别是在我们需要理解因果关系的场景中。

    摘要图
  • 发布了文章 ·
    机器学习中空间和时间自相关的分析:从理论基础到实践应用

    空间和时间自相关是数据分析中的两个基本概念,它们揭示了现象在空间和时间维度上的相互依赖关系。这些概念在各个领域都有广泛应用,从环境科学到城市规划,从流行病学到经济学。本文将探讨这些概念的理论基础,并通过一个实际的野火风险预测案例来展示它们的应用。

    摘要图
  • 发布了文章 ·
    LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势

    近年来,大型语言模型(Large Language Models,LLMs)在自然语言处理领域取得了显著进展。受此启发,研究人员开始探索将LLMs应用于时间序列预测任务的可能性。由于时间序列数据与文本数据在特征上存在显著差异,直接将LLMs应用于时间序列预测仍面临诸多挑战。

    摘要图
  • 发布了文章 ·
    过采样与欠采样技术原理图解:基于二维数据的常见方法效果对比

    在现实场景中,收集一个每个类别样本数量完全相同的数据集是十分困难的。实际数据往往是不平衡的,这对于分类模型的训练可能会造成问题。当模型在这样一个不平衡数据集上训练时,由于某个类别的样本数量远多于其他类别,模型通常会更擅长预测样本量较大的类别,而在预测小类别时表现不佳。为了缓解这一问题,我们可以使用过采...

    摘要图
  • 发布了文章 ·
    深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究

    深度学习实践者都知道,在训练神经网络时,正确设置学习率是使模型达到良好性能的关键因素之一。学习率通常会在训练过程中根据某种调度策略进行动态调整。调度策略的选择对训练质量也有很大影响。

    摘要图
  • 发布了文章 ·
    RAPTOR:多模型融合+层次结构 = 检索性能提升20%,结果还更稳健

    在现代信息检索领域,单一检索模型的局限性日益显现。本文深入探讨如何通过多模型集成技术提升检索系统的性能,并详细介绍RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval)框架的实现机制。这一研究建立在之前探讨的RAG Fusion技术基础之上,旨在提供更全面的信息检索解决方案。

    摘要图
认证与成就
获得 909 次点赞
2021年08月31日 加入
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息