当使用神经网络时,我们可以通过它的准确性来评估模型的性能,但是当涉及到计算机视觉问题时,不仅要有最好的准确性,还要有可解释性和对哪些特征/数据点有助于做出决策的理解。模型专注于正确的特征比模型的准确性更重要。
DragGAN的官方版还没有发布,但是已经有非官方版的实现了,我们看看如何使用。DragGAN不仅让GAN重新回到竞争轨道上,而且为GAN图像处理开辟了新的可能性。正式版本将于本月发布。但是现在已经可以在一个非官方的演示中试用这个新工具了
JupyterLab 是 Jupyter Notebook 的下一代版本,它提供了更强大的功能和更灵活的用户界面,6月6日,官方发布了JupyterLab 4.0的说明,并且说该版本是下一个主要的版本。
Python在处理与时间相关的操作时有两个重要模块:time和datetime。在本文中,我们介绍这两个模块并为每个场景提供带有代码和输出的说明性示例。
NumPy是一个用于科学计算和数据分析的Python库,也是机器学习的支柱。可以说NumPy奠定了Python在机器学习中的地位。NumPy提供了一个强大的多维数组对象,以及广泛的数学函数,可以对大型数据集进行有效的操作。这里的“大”是指数百万行。
Auto-GPT 的出现,意味着 AI 已经能够在没有人工干扰的情况下独立地完成目标任务。这个在 GitHub 中不断创造历史的项目,正以惊人的速度发展着、变化着。
自从ChatGPT火爆以来,各种通用的大型模型层出不穷,GPT4、SAM等等,本周一Meta 又开源了新的语音模型MMS,这个模型号称支持4000多种语言,并且发布了支持1100种语言的预训练模型权重,最主要的是这个模型不仅支持ASR,还支持TTS,也就是说不仅可以语音转文字,还可以文字转语音。
PyTorch 2.0 发布也有一段时间了,大家是不是已经开始用了呢? PyTorch 2.0 通过引入 torch.compile,可以显着提高训练和推理速度。 与 eagerly 模式相反,编译 API 将模型转换为中间计算图(FX graph),然后以某种方式将其编译为低级计算内核,这样可以提高运行速度。
Langchain可以帮助开发人员构建由大型语言模型(llm)支持的应用程序。它提供一个框架将LLM与其他数据源(如互联网或个人文件)连接起来。这允许开发人员将多个命令链接在一起,以创建更复杂的应用程序。包括最近比较火爆的AutoGPT等都是使用了Langchain框架进行开发的。所以本文将介绍如何使用LangChain来创建我们自己的论...
GitHub Copilot 是一款由 GitHub 和 OpenAI 共同开发的人工智能编程助手。它是一种基于机器学习的代码自动完成工具,旨在帮助开发人员更高效地编写代码。
LayerNorm 一直是 Transformer 架构的重要组成部分。如果问大多人为什么要 LayerNorm,一般的回答是:使用 LayerNorm 来归一化前向传播的激活和反向传播的梯度。
形态学是图像处理领域的一个分支,主要用于描述和处理图像中的形状和结构。形态学可以用于提取图像中的特征、消除噪声、改变图像的形状等。其中形态学的核心操作是形态学运算。
在本文中,我们将介绍在 Reacher 环境中训练智能代理控制双关节机械臂,这是一种使用 Unity ML-Agents 工具包开发的基于 Unity 的模拟程序。 我们的目标是高精度的到达目标位置,所以这里我们可以使用专为连续状态和动作空间设计的最先进的Deep Deterministic Policy Gradient (DDPG) 算法。
语言模型(LM)在NLP领域的发展速度非常快,特别是在大型语言模型(LLM)方面:当语言模型具有大量参数或权重/系数时,它们被称为“大型”。这些“大型”语言模型拥有处理和理解大量自然语言数据的能力。
我们都知道 Kafka 的 topic 资源比较“贵”,所以一般会给项目 topic 权限限制,按需申请。Milvus 会在建新表时自动申请 kafka topic 资源,这时候自动申请不到怎么办?手动配置 topic 要符合什么规范才能被 Milvus 使用?
AutoGPT能够在你的电脑上做任何你想做的事情,并且我们在前面的文章中也介绍了其他的一些类似的应用。
随着 ChatGPT 引起一波又一波的“GPT热潮”,自然语言领域又一次成为了人工智能的讨论焦点。大家不由得思考,计算机视觉领域里是否会出现这样一个堪称划时代的模型?在这种万众瞩目的时候,一直处在行业前沿的 MetaAI 推出了一个新模型 Segment Anything Model (SAM),号称“了解物体是什么的一般概念”,能够“一键从任意...
对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。
Grad-CAM (Gradient-weighted Class Activation Mapping) 是一种可视化深度神经网络中哪些部分对于预测结果贡献最大的技术。它能够定位到特定的图像区域,从而使得神经网络的决策过程更加可解释和可视化。
如果你刚刚开始学习神经网络,激活函数的原理一开始可能很难理解。但是如果你想开发强大的神经网络,理解它们是很重要的。