AI学习者 · 1月4日

实战 | YOLOv8实现CBC细胞计数

数据集地址

数据集包含 360 张红血细胞图像及其注释文件,分为训练集与验证集。训练文件夹包含 300 张带有注释的图像。测试和验证文件夹都包含 60 张带有注释的图像。我们对原始数据集进行了一些修改以准备此 CBC 数据集,并将数据集分成三部分。在360张涂片图像中,首先使用300张带注释的血细胞图像作为训练集,然后将其余60张带有注释的图像用作测试集。CBC数据集地址如下:

[https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset](https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset)

模型训练

准备好数据集以后,直接按下面的命令行运行即可:

yolo train model=yolov8n.pt data=cbc_dataset.yaml epochs=25 imgsz=640 batch=1

image.png
image.png
image.png

导出与测试

模型导出与测试

yolo export model=cbc _best.pt format=onnx

image.png

部署推理

转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下

ie = Core()
for device in ie.available_devices:
    print(device)

# Read IR
model = ie.read_model(model="cbc_best.onnx")
compiled_model = ie.compile_model(model=model, device_name="CPU")
output_layer = compiled_model.output(0)

frame = cv.imread("D:/cbc_analysis/data/image_002.jpg")
bgr = format_yolov8(frame)
img_h, img_w, img_c = bgr.shape

start = time.time()
image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)

res = compiled_model([image])[output_layer] # 1x84x8400
rows = np.squeeze(res, 0).T
class_ids = []
confidences = []
boxes = []
x_factor = img_w / 640
y_factor = img_h / 640

for r in range(rows.shape[0]):
    row = rows[r]
    classes_scores = row[4:]
    _, _, _, max_indx = cv.minMaxLoc(classes_scores)
    class_id = max_indx[1]
    if (classes_scores[class_id] > .25):
        confidences.append(classes_scores[class_id])
        class_ids.append(class_id)
        x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
        left = int((x - 0.5 * w) * x_factor)
        top = int((y - 0.5 * h) * y_factor)
        width = int(w * x_factor)
        height = int(h * y_factor)
        box = np.array([left, top, width, height])
        boxes.append(box)

indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
for index in indexes:
    box = boxes[index]
    color = colors[int(class_ids[index]) % len(colors)]
    rr = int((box[2] + box[3])/4)
    cv.circle(frame, (box[0]+int(box[2]/2), box[1]+int(box[3]/2)), rr-4, color, 2)
    cv.putText(frame, class_list[class_ids[index]], (box[0] + int(box[2] / 2), box[1] + int(box[3] / 2)),
               cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
cv.putText(frame, "gloomyfish@2024", (20, 45), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

cv.imshow("YOLOv8+OpenVINO2023 RBC(Red Blood Cell) Count", frame)
cv.waitKey(0)
cv.destroyAllWindows()

image.png
image.png
image.png

作者:gloomyfish
文章来源:OpenCV学堂

推荐阅读

更多嵌入式AI干货请关注嵌入式AI专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。

推荐阅读
关注数
18838
内容数
1372
嵌入式端AI,包括AI算法在推理框架Tengine,MNN,NCNN,PaddlePaddle及相关芯片上的实现。欢迎加入微信交流群,微信号:aijishu20(备注:嵌入式)
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息