ronghuaiyang · 2020年11月23日

多摄像头实时目标跟踪和计数,使用YOLOv4,Deep SORT和Flask

首发:AI公园公众号
作者:LeonLok
编译:ronghuaiyang

导读

本文来自github,很实用的一个应用。
git仓库地址:https://github.com/LeonLok/Mu...
这个存储库包含了我的目标检测和跟踪项目。所有这些都可以托管在云服务器上。
由于有ImageZMQ,你还可以使用自己的异步处理IP相机。

Deep SORT 和 YOLO v4

Check out我的Deep SORT repository:https://github.com/LeonLok/De...,查看我使用的跟踪算法,其中包括Tensorflow 2.0、异步视频处理和低置信度跟踪过滤。

交通流量计数

这个项目是目标计数应用的一个扩展。

image.png

功能

  • 使用DETRAC数据集生成的244,617幅图像进行训练。可以在这里找到我创建的转换代码。
  • 我把这篇论文:https://ieeexplore.ieee.org/d...
  • 每个跟踪id只计数一次。
  • 通过查看被跟踪目标的路径与计数线的交叉点对目标进行计数。
  • 因此,那些跟丢了但用相同的ID重新跟踪的仍然会被计数。
  • 使用低置信度滤波进行跟踪,来自上面同样的论文。
  • 提供更低的假阳性率。
  • 跟踪目标显示平均检测置信度。
  • 跟踪的类别由最常见的检测类别确定。
  • 显示检测结果是可选的(但是隐藏了平均检测置信度)。
  • 可以使用多个IP摄像头。
  • 方向计数可以配置为基于角度。
  • 每一小时的间隔记录计数。
  • 总的计数
  • 基于类别的计数
  • 记录每个计数目标的交叉详细信息。
  • 交叉时间
  • 交叉点坐标
  • 交叉角度
  • 可以托管在云服务器上。

注意,由于DETRAC不包含任何摩托车,它们是唯一被忽略的车辆。此外,DETRAC数据集只包含中国的交通图像,因此由于缺乏训练数据,它很难正确地检测出其他国家的某些车辆。例如,它经常会将掀背车误归为suv,或者由于不同的颜色方案而无法识别出租车。

目标计数

这个项目最初打算成为一个应用程序,用于使用我自己的智能手机计算当前在多个房间的人数,服务器被远程托管。下面展示了对人和汽车的检测、跟踪和计数。
image.png

功能

  • 对当前视场中的物体进行计数
  • 跟踪可选
  • 支持多个IP相机
  • 每间隔一个小时记录一次当前的计数
  • 当前的总数
  • 当前每个类别的计数
  • 可以托管在云服务器上

使用我自己的智能手机作为IP相机

11.23。5.gif

训练你自己的机动车跟踪模型


我使用DETRAC训练带有v3标注的数据集训练了YOLOv4和Deep SORT模型。我提供了将DETRAC训练图像和v3标注转换为正确格式的脚本,用于训练YOLOv4模型和Deep SORT跟踪模型。

Deep SORT 转换参数

DETRAC图像转换为Market 1501训练格式。

  • 遮挡阈值 - 忽略遮挡比率过高的车辆序列。
  • 截断阈值 - 忽略截断率过高的车辆序列。
  • 出现的次数 - 车辆序列太短(即没有足够的图像)被丢弃后,考虑遮挡和截断比率。

YOLO 转换参数

DETRAC图像被转换成Darknet YOLO训练格式。

  • 遮挡阈值 - 忽略遮挡比率过高的车辆序列。
  • 截断阈值 - 忽略截断率过高的车辆序列。

两种模型都在DETRAC训练集上进行了训练和评估,但由于缺少v3标注,测试集还没有评估,我也没有MATLAB用于Deep SORT的评估软件。到目前为止,对于我的用例来说,它已经足够好了。

使用的硬件

  • Nvidia GTX 1070 GPU
  • i7-8700K CPU

为了让大家了解我们的期望,我可以运行两个流量计数流,每个流大约10fps(正如你在流量计数gif中看到的)。当然,这在很大程度上取决于流分辨率以及用于检测和跟踪的帧数。

YOLO v3 vs. YOLO v4

当我第一次开始目标计数项目时,我使用YOLOv3,跟踪帧率大约是10FPS,很难一次运行多个流。使用YOLOv4可以更容易地运行具有更高分辨率的两个流,并提供更好的检测精度。

依赖

  • Tensorflow-GPU 1.14
  • Keras 2.3.1
  • opencv-python 4.2.0
  • ImageZMQ
  • numpy 1.18.2
  • Flask 1.1.1
  • pillow

这个项目是在Python 3.6上构建和测试的。

感谢相关贡献者

—END—

英文原文:https://github.com/LeonLok/Mu...

推荐阅读

关注图像处理,自然语言处理,机器学习等人工智能领域,请点击关注AI公园专栏
欢迎关注微信公众号
AI公园 公众号二维码.jfif
推荐阅读
关注数
8257
内容数
210
关注图像处理,NLP,机器学习等人工智能领域
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息