转载于:GiantPandaCV
作者: BBuf
0x00. 前言
上篇文章系统的介绍了TVM Pass Infra,并解析了Relay树结构以及Constant Folding Pass的具体做法。这一节,我想先补充一下TVM Pass Infra的用法,接着介绍一下TVM算符融合需要用到的支配树这个数据结构,最后再深入分析TVM中的一个非常重要的Pass即算符融合。
0x01. 如何使用TVM Pass Infra
关于TVM Pass Infra的介绍可以移步【从零开始学深度学习编译器】七,万字长文入门TVM Pass查看。这里来介绍一下TVM Pass Infra的使用方法,内容翻译自https://tvm.apache.org/docs/t...\_pass\_infra.html,加了一些自己的理解。
随着 Relay/tir 中优化pass次数的增加,手动执行它们并维护它们的依赖关系变得棘手。因此,我们引入了一个Pass基础设施来管理优化passes,并使其适用于 TVM 栈中不同层的 IR。
Relay/tir 程序的优化Pass可以应用于各种粒度,即分别使用 tvm.relay.transform.FunctionPass/`tvm.tir.transform.PrimFuncPass
和 tvm.transform.ModulePass
的function-level和module-level级别的优化pass。或者用户可以依靠 tvm.transform.Sequential
在 Relay/tir 程序上应用一系列passes,其中passes之间的依赖关系可以通过Pass Infra解决。
这里主要是来演示一些开发人员如何使用Pass Infra来进行某种优化,并为Relay程序创建优化管道。这里的方法同样适用于tir。首先导入一些必要的包。
import numpy as np
import tvm
from tvm import te
import tvm.relay as relay
接下来,展示了一个简单的Relay程序,该程序将用于执行各种实例Pass的例子。同样,用户也可以编写一个tir原始函数并应用Pass。
创建一个Relay 程序示例
shape = (1, 64, 54, 54)
c_data = np.empty(shape).astype("float32")
c = relay.const(c_data)
weight = relay.var("weight", shape=(64, 64, 3, 3))
x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
conv = relay.nn.conv2d(x, weight)
y = relay.add(c, c)
y = relay.multiply(y, relay.const(2, "float32"))
y = relay.add(conv, y)
z = relay.add(y, c)
z1 = relay.add(y, c)
z2 = relay.add(z, z1)
return relay.Function([x, weight], z2)
然后这里给一个conv op注册一个输出数据排布更改的Pass,这个Pass将卷积层的NCHW数据排布变化成NCHW16c
的数据排布。
def alter_conv2d(attrs, inputs, tinfos, out_type):
data, weight = inputs
new_attrs = dict(attrs)
new_attrs["data_layout"] = "NCHW16c"
return relay.nn.conv2d(data, weight, **new_attrs)
优化程序
在应用Pass之前我们看一下Relay程序长什么样:
%0 = add(meta[relay.Constant][0], meta[relay.Constant][0]);
%1 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]);
%2 = multiply(%0, 2f);
%3 = add(%1, %2);
%4 = add(%3, meta[relay.Constant][0]);
%5 = add(%3, meta[relay.Constant][0]);
add(%4, %5)
}
现在我们要优化程序。Relay 具有许多优化功能。我们将选择其中的一些应用到这个示例程序中。
手动应用优化Passes,这里使用一个FoldConstant的Pass。
# functions for optimization.
f = example()
mod = tvm.IRModule.from_expr(f)
# Now we can apply constant folding on the module.
# fold_const here is a callback that doesn't take any parameters.
fold_const = relay.transform.FoldConstant()
# Then, we can invoke the pass on the given module. Note that the constant
# folding pass works at the function-level. That being said, each function in
# the module will be applied with the optimization. Users don't need to iterate
# through individual functions manually to apply this pass.
mod = fold_const(mod)
# We can see from the updated program that the constants are folded.
print(mod)
应用了FoldConstant Pass之后Relay程序长这样:
%0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%3 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */ /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
可以看到相对于优化之前的IR,应用了FoldConstant Pass之后初始IR的%2 = multiply(%0, 2f);
由于是一个常量直接被折叠起来变成了relay.Constant][1]
。接下来可以以类似的方式应用更多优化。例如,我们可以消除 z 和 z1 使用的公共表达式,即使用EliminateCommonSubexpr
Pass。
mod = relay.transform.EliminateCommonSubexpr()(mod)
print(mod)
看下面的图就很清晰了。
公共表达式消除Pass
一些优化,例如fuse,也是带一些配置参数的。例如,opt\_level 0 将不允许运算融合在一起。用户可以通过`
fuse_opt_level`
来启用它。
mod = relay.transform.FuseOps(fuse_opt_level=0)(mod)
# We can observe that the optimized module contains functions that only have
# a signle primitive op.
print(mod)
这样IR就会是下面展示的样子:
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%0 = fn (%p03: Tensor[(1, 64, 56, 56), float32], %p12: Tensor[(64, 64, 3, 3), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
nn.conv2d(%p03, %p12, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%1 = %0(%x, %weight) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = fn (%p02: Tensor[(1, 64, 54, 54), float32], %p11: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
add(%p02, %p11) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%3 = %2(%1, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%4 = fn (%p01: Tensor[(1, 64, 54, 54), float32], %p1: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
add(%p01, %p1) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%5 = %4(%3, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%6 = fn (%p0: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
add(%p0, %p0) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%6(%5) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
使用 Sequential 应用一系列Pass
像上面这样应用pass实际上很麻烦,它可能需要用户更好地理解它们之间的依赖关系。例如,目前 fusion 在 let bindings上效果不佳。因此,如果在融合之前应用 relay.transform.ToANormalForm()
,我们将无法融合可融合的运算符,因为此Pass为每个表达式生成 let bindings以规范 Relay 程序。
因此,Relay 提供了 tvm.transform.Sequential
,通过指定每个Pass所需的passes并将它们打包为一个整体来执行,从而减轻开发人员明确处理这些问题的负担。例如,现在可以使用sequential 样式应用相同的passes,如下所示。tvm.transform.Sequential
类似于 torch.nn.sequential
和 mxnet.gluon.block
。例如,torch.nn.sequential
用于包含将被添加以构建网络的一系列 PyTorch Module,它侧重于网络层。相反,我们的Pass Infra中的 tvm.transform.Sequential
用于优化Pass。
# Now let's execute some passes through :py:class:`tvm.transform.Sequential`
f = example()
mod = tvm.IRModule.from_expr(f)
# Glob the interested passes.
seq = tvm.transform.Sequential(
[
relay.transform.FoldConstant(),
relay.transform.EliminateCommonSubexpr(),
relay.transform.FuseOps(fuse_opt_level=2),
]
)
mod1 = seq(mod)
print(mod1)
输出:
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%4 = fn (%p0: Tensor[(1, 64, 56, 56), float32], %p1: Tensor[(64, 64, 3, 3), float32], %p2: Tensor[(1, 64, 54, 54), float32], %p3: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
%0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%3 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%4(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
从转换后的Relay程序中,我们可以看到仍然有两个相同的加法操作。这是因为实际上并没有执行EliminateCommonSubexpr
这个Pass。原因别小于或者等于2的pass才会在tvm.transform.Sequential
下默认执行。但是,Pass Infra 提供了一个配置接口,供用户自定义他们想要执行的优化级别。
with tvm.transform.PassContext(opt_level=3):
mod2 = seq(mod)
print(mod2)
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%3 = fn (%p0: Tensor[(1, 64, 56, 56), float32], %p1: Tensor[(64, 64, 3, 3), float32], %p2: Tensor[(1, 64, 54, 54), float32], %p3: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
%0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%3(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
我们现在可以看到Relay程序中只保留了两个相同表达式的一个。此外,用户还可以使用disabled_pass
配置来选择性地禁用某些Pass,这类似于使用通用编译器(比如GCC和Clang)的-fno-xxx选项。例如,我们可以如下面的例子所示禁用EliminateCommonSubexpr
Pass,打印的Relay Module将再次显示两个相同的加法操作。
with tvm.transform.PassContext(opt_level=3, disabled_pass=["EliminateCommonSubexpr"]):
mod3 = seq(mod)
print(mod3)
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%4 = fn (%p0: Tensor[(1, 64, 56, 56), float32], %p1: Tensor[(64, 64, 3, 3), float32], %p2: Tensor[(1, 64, 54, 54), float32], %p3: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
%0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%3 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%4(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
到目前为止应用的Pass与目标设备无关。Pass Infra 还提供了一些硬件感知Pass。例如,layout alteration pass就属于此类。
with tvm.transform.PassContext(opt_level=3):
mod4 = seq(mod)
print(mod4)
seq1 = tvm.transform.Sequential([relay.transform.AlterOpLayout()])
with tvm.transform.PassContext(opt_level=3):
with tvm.target.Target("llvm"):
mod5 = seq1(mod)
print(mod5)
Relay Module输出结果:
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%3 = fn (%p0: Tensor[(1, 64, 56, 56), float32], %p1: Tensor[(64, 64, 3, 3), float32], %p2: Tensor[(1, 64, 54, 54), float32], %p3: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
%0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
};
%3(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%0 = layout_transform(%x, src_layout="NCHW", dst_layout="NCHW16c") /* ty=Tensor[(1, 4, 56, 56, 16), float32] */;
%1 = add(meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */ /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = multiply(%1, 2f /* ty=float32 */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%3 = nn.conv2d(%0, %weight, padding=[0, 0, 0, 0], data_layout="NCHW16c") /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%4 = layout_transform(%2, src_layout="NCHW", dst_layout="NCHW16c") /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%5 = add(%3, %4) /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%6 = layout_transform(meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */ /* ty=Tensor[(1, 64, 54, 54), float32] */ /* ty=Tensor[(1, 64, 54, 54), float32] */, src_layout="NCHW", dst_layout="NCHW16c") /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%7 = add(%5, %6) /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%8 = add(%5, %6) /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
%9 = add(%7, %8) /* ty=Tensor[(1, 4, 54, 54, 16), float32] */;
layout_transform(%9, src_layout="NCHW16c", dst_layout="NCHW") /* ty=Tensor[(1, 64, 54, 54), float32] */
}
使用Python装饰器实现一个Pass
这个示例说明了我们如何使用Python装饰器通过pass infra编排定制的优化pass。此功能极大的简化了实现passes的难度。例如,用户可以简单的定义一个装饰器类来实现函数级别的优化。如下面的例子所示,transform\_function包装了一个类,将所有的常量乘以c。然后,当我们调用这个自定义Pass之后,给定Module中的每一个函数都会被访问并且函数中的每个常量都会被替换。
@relay.transform.function_pass(opt_level=1)
class CustomPipeline:
"""Simple test function to replace one argument to another."""
def __init__(self, multiplier):
self.multiplier = multiplier
# This function can define a pass.
def transform_function(self, func, mod, ctx):
obj = self
class ReplaceConstant(tvm.relay.ExprMutator):
def visit_constant(self, c):
return relay.multiply(obj.multiplier, c)
return ReplaceConstant().visit(func)
f = example()
mod = tvm.IRModule.from_expr(f)
custom_pass = CustomPipeline(multiplier=relay.const(3, "float32"))
assert custom_pass.info.name == "CustomPipeline"
mod3 = custom_pass(mod)
print(mod3)
输出:
def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] {
%0 = multiply(3f /* ty=float32 */, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%1 = add(%0, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%2 = multiply(3f /* ty=float32 */ /* ty=float32 */, 2f /* ty=float32 */) /* ty=float32 */;
%3 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%4 = multiply(%1, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%5 = add(%3, %4) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%6 = add(%5, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
%7 = add(%5, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
add(%6, %7) /* ty=Tensor[(1, 64, 54, 54), float32] */
}
调试一个Pass
TVM 为用户提供即插即用风格的调试pass,通过特殊pass(PrintIR
)完成特定pass后打印 IR 以转储整个模块的 IR。如下所示:
mod = tvm.IRModule.from_expr(f)
seq = tvm.transform.Sequential(
[
relay.transform.FoldConstant(),
tvm.transform.PrintIR(),
relay.transform.EliminateCommonSubexpr(),
relay.transform.FuseOps(),
relay.transform.AlterOpLayout(),
]
)
# By inserting the ``PrintIR`` pass after ``FoldConstant``, the pass infra will
# dump out the module IR when ``FoldConstant`` is done. Users can plug in this
# pass after any pass they want to debug for viewing the optimization effect.
#
# There is a more flexible debugging mechanism also exposed by the build configuration
# object. One can pass a tracing function which can be used to execute arbitrary code
# before and/or after each pass. A tracing function will receive a :py::class:`tvm.IRModule`,
# a :py:class:`tvm.transform.PassInfo` object,
# and a boolean indicating whether you are executing before, or after a pass.
# An example is below.
@tvm.instrument.pass_instrument
class PrintIR:
"""Print the name of the pass, the IR, only before passes execute."""
def run_before_pass(self, mod, info):
print("Running pass: {}", info)
print(mod)
with tvm.transform.PassContext(opt_level=3, instruments=[PrintIR()]):
with tvm.target.Target("llvm"):
# Perform the optimizations.
mod = seq(mod)
print(mod)
print("done")
这里由于对sequential pass中每个Pass后都插入了这个PrintIR
Pass,输出结果会很长,这里就不贴了,感兴趣的同学可以自己跑一下程序:tvm/tutorials/dev/use_pass_infra.py
0x02. 支配树
在讲解算符融合的代码前需要先明确一个叫支配树的东西,不然程序是不好理解的,大家可以参考这篇博客进行理解:https://www.cnblogs.com/Zeonf...
什么是支配树?
对于一张有向图(可以有环)我们规定一个起点, 从点到图上另一个点可能存在很多条路径(下面将到简写为)。
如果对于的任意一条路径中都存在一个点, 那么我们称点为的支配点(也可以称作是的必经点), 注意点不讨论支配点. 下面用表示离点最近的支配点。
对于原图上除外每一个点, 从向建一条边, 最后我们可以得到一个以为根的树. 这个树我们就叫它"支配树"。
简化问题
- 树
对于一棵树, 我们用表示根节点, 表示树上的某个非根节点. 很容易发现从路径上的所有点都是支配点, 而就是的父节点。
这个可以在O(n)的时间内实现。
- DAG(有向无环图)
因为是有向无环图, 所以我们可以按照拓扑序构建支配树。
假设当前我们构造到拓扑序中第个节点编号为, 那么拓扑序中第个节点已经处理好了, 考虑所有能够直接到达点的节点, 对于这些节点我们求出它们在支配树上的最近公共祖先, 这个点就是点在支配树上的父亲
如果使用倍增求LCA,这个问题可以在的时间内实现。
对于这两个问题我们能够很简便的求出支配树。
我们知道TVM Relay表示的计算图是一个DAG,所以我们其实了解到这里就够了,不需要继续深入了。
TVM的代码中也提到这点
但在算符融合的Pass中构建的其实是后支配树,这里不是通过拓扑序来处理,而是通过DFS序来进行处理。
为什么要这样做呢?我们可以看一下fuse_ops.cc
中举的例子:
conv2d
/ | \
/ | \
op op op
\ | /
\ | /
elemwise add
|
可以看到conv2d要和elemwise add发生融合,则必须判断三个op是否能和elemwise add融合。
0x03. TVM的算符融合(操作符融合)
在TVM论文中提到,对于GPU和特定加速器而言,将多次操作融合在一起的优化方法能较为明显地降低执行时间。操作符融合的想法是来源于单个Kernel函数会节省将中间结果写回全局内存的时间消耗。从具体分析来看,我们总结了四种类别的图操作符:
- injective(one-to-one map):映射函数,比如加法,点乘等。
- reduction:约简,如sum/max/min,输入到输出具有降维性质的,比如sum。
- complex-out-fusable(can fuse element-wise map to output),是计算比较复杂的,如conv2d
- opaque(cannot be fused) 无法被融合的算符,比如sort。
根据以上对算符的不同类型,TVM提供了三种融合规则:
TVM的算符融合Pass规则和对应的例子
下图还展示了conv-bn-relu融合前后的性能对比:
算符融合后有明显加速
在TVM中实现算符融合 Pass的代码在tvm/src/relay/transforms/fuse_ops.cc
。TVM的算符融合主要包含以下三个步骤:
- 遍历Relay树,建立DAG用于后支配树分析
- 建立后支配树
- 应用算符融合算法
建立DAG
首先我们看一下Pass的注册接口:
namespace transform {
Pass FuseOps(int fuse_opt_level) {
runtime::TypedPackedFunc<Function(Function, IRModule, PassContext)> pass_func =
[=](Function f, IRModule m, PassContext pc) {
int opt_level = fuse_opt_level == -1 ? pc->opt_level : fuse_opt_level;
auto max_fuse_depth = pc->GetConfig("relay.FuseOps.max_depth", Integer(kMaxFusedOps));
return Downcast<Function>(FuseOps(f, opt_level, max_fuse_depth.value(), m));
};
return CreateFunctionPass(pass_func, 1, "FuseOps", {"InferType"});
}
TVM_REGISTER_GLOBAL("relay._transform.FuseOps").set_body_typed(FuseOps);
可以看到FuseOps这个Pass依赖了InferType这个Pass,并且这里通过PassContext获取了一些必要的配置信息,最后还为这个Pass注册了Python接口。
下面我们来看一下DAG的创建流程,首先定位到:
IndexedForwardGraph IndexedForwardGraph::Create(support::Arena* arena, const Expr& body) {
return Creator(arena).Prepare(body);
}
其中Creator这个类是核心:
// Creator of post dominator tree of the dataflow
class IndexedForwardGraph::Creator : private ExprVisitor {
public:
explicit Creator(support::Arena* arena) : arena_(arena) {}
IndexedForwardGraph Prepare(const Expr& body) {
this->Update(body, nullptr, kOpaque);
this->VisitExpr(body);
return std::move(graph_);
}
//这里省略了成员变量和函数
.....
}
通过之前对Pass Infra的介绍,我们知道VisitExpr
实际调用的是在类IndexedforwardGraph中定义的VisitExpr_
函数,通过深度优先搜索遍历Relay树,并且建立DAG图。上面的函数中,在调用VisitExpr
之前调用Update
函数来对DAG进行了初始化并插入根节点。
DFS可以获得一个后序搜索树,在搜索的过程中使用Update
这个成员函数来建边,我们来看一下这个函数接口:
// Update the message stored at the node.
void Update(const Expr& node, IndexedForwardGraph::Node* parent, OpPatternKind pattern) {
const tvm::Object* key = node.get();
IndexedForwardGraph::Node* current;
auto it = graph_.node_map.find(key);
if (it != graph_.node_map.end()) {
current = it->second;
} else {
current = arena_->make<IndexedForwardGraph::Node>();
graph_.node_map[key] = current;
}
if (parent != nullptr) {
auto* link = arena_->make<LinkNode<IndexedForwardGraph::Edge> >();
link->value.node = parent;
link->value.pattern = pattern;
current->outputs.Push(link);
} else {
current->extern_ref = true;
}
}
首先输入参数中有一个OpPatternKind pattern
,这个数据类型定义在tvm/include/tvm/relay/op_attr_types.h
中,它可以指定节点和边(边也是一种节点)的Operator类型。然后在上面的函数中可以看到节点有一个outputs
成员变量,它保存了一个节点的输入的边,在构建后序支配树会通过这些输入边求取LCA。那么在这个搜索树(DAG)基础上应用支配树算法,就能够得到一个后序支配树了。
/*! \brief operator pattern used in graph fusion */
enum OpPatternKind {
// Elementwise operation
kElemWise = 0,
// Broadcasting operator, can always map output axis to the input in order.
// for example :code:`out[i, ax1, j, ax2] = input[i, j]`.
// Note that the axis need to be in order so transpose is not a bcast operator.
kBroadcast = 1,
// Injective operator, can always injectively map output axis to a single input axis.
// All injective operator can still be safely fused to injective and reduction.
kInjective = 2,
// Communicative reduction operator.
kCommReduce = 3,
// Complex operation, can still fuse elemwise operations into its output.
// but cannot chain another complex op
kOutEWiseFusable = 4,
// The pattern for tuple nodes. Can fuse into subsequent injective ops,
// but treated specially
kTuple = 7,
// Opaque operation, cannot fuse anything.
kOpaque = 8
};
在IndexedForwardGraph::Creator
这个类中为不同节点类型重写visitExpr_
函数,节点类型有FunctionNode,ConstantNode, CallNode, TuppleNode等。比如CallNode的visitExpr_
函数实现如下:
void VisitExpr_(const CallNode* call) final {
ICHECK(graph_.node_map.count(call));
Node* node = graph_.node_map.at(call);
static auto fpattern = Op::GetAttrMap<TOpPattern>("TOpPattern");
// Now we set the pattern of this call.
//
// If we see a call mentioning an operator we should mark it with its
// annotated pattern.
//
// If the pattern is not annotated we will default to opaque.
//
// Finally if the operator position is not a call node we will
// need to call Update, as it may be an arbitrary expression.
OpPatternKind op_pattern = kOpaque;
if (const OpNode* opnode = call->op.as<OpNode>()) {
auto op = GetRef<Op>(opnode);
if (IsDynamic(call->checked_type()) && IsDataDependent(call)) {
// output of a shape func can't be fed to a data-dependent shape func
op_pattern = kOpaque;
} else {
op_pattern = static_cast<OpPatternKind>(fpattern[op]);
}
} else {
this->Update(call->op, node, kOpaque);
}
node->pattern = op_pattern;
this->Update(call->op, nullptr, kOpaque);
const auto* rtype = call->checked_type().as<TensorTypeNode>();
// pass the analysis back to all the children it references.
for (size_t i = 0; i < call->args.size(); ++i) {
const auto* arg_type = call->args[i]->checked_type().as<TensorTypeNode>();
// specifically check if result type is the same as arguments type
OpPatternKind edge_pattern = op_pattern;
if (edge_pattern == kBroadcast && arg_type != nullptr && rtype != nullptr &&
attr_equal_(rtype->shape, arg_type->shape)) {
edge_pattern = kElemWise;
}
this->Update(call->args[i], node, edge_pattern);
}
ExprVisitor::VisitExpr_(call);
this->AddNode(call);
}
我们可以看到函数的最后还递归调用了VisitExpr_
函数,将深度优先搜索到的节点按照叶节点为起点顺序一次加入DAG图中,因为这是后序遍历。只有ConstantNode
的VisitExpr_
函数不会再递归调用,因为常量节点是不会存在叶节点的。
在CallNode的VisitExpr_
的实现中,首先会将其输入加入到DAG中,同时遍历输入和输入有关的Edge(边也是特殊的节点),并更新DAG。我们知道在基类ExprVisitor
中对CallNode访问函数定义为:
void ExprVisitor::VisitExpr_(const CallNode* op) {
this->VisitSpan(op->span);
this->VisitExpr(op->op);
for (auto ty_arg : op->type_args) {
this->VisitType(ty_arg);
}
for (auto arg : op->args) {
this->VisitExpr(arg);
}
}
并且这里IndexForwardGraph类继承了ExprVisitor类,而VisitExpr_
是虚函数,this就会指向IndexForwardGraph实例,最终就会调用这个类中定义的VisitExpr\_函数,实现递归的遍历relay树。
建立后序支配树
上面我们已经完成了利用Relay树建立了用于后支配树构建的DAG(注意这个DAG是DFS后序遍历产生的)。接下来我们就来看看如何建立后序支配树,支配树的构建由DominatorTree
这个类的PostDom
成员函数来完成。因为在后序遍历Relay树的时候最后一个节点就是后序支配树的根节点,所以我们从根节点开始寻找每个节点相连节点的LCA,那么这个LCA就是后序支配点。代码实现如下:
DominatorTree DominatorTree::PostDom(support::Arena* arena, const IndexedForwardGraph& graph) {
DominatorTree tree;
tree.nodes.resize(graph.post_dfs_order.size(), nullptr);
// reverse topo order
for (size_t i = graph.post_dfs_order.size(); i != 0; --i) {
size_t index = i - 1;
tree.nodes[index] = tree.GetNode(arena, graph.post_dfs_order[index]);
}
return tree;
}
其中GetNode
函数用来获取支配点,构造后支配树。代码实现如下:
/*!
* \brief Convert the Node from an IndexedForwardGraph Node into DomaintorTree Node.
* \param arena The Arena.
* \param gnode An IndexedForwardGraph Node.
* \return The DominatorTree Node.
*/
Node* GetNode(support::Arena* arena, IndexedForwardGraph::Node* gnode) {
Node* tnode = arena->make<Node>();
tnode->gnode = gnode;
if (gnode->extern_ref) {
tnode->depth = 1;
tnode->parent = nullptr;
tnode->pattern = kOpaque;
} else {
// find the LCAs of all outputs.
OpPatternKind pattern = kElemWise;
Node* parent = LeastCommonAncestor(gnode->outputs, &pattern);
tnode->depth = parent ? parent->depth + 1 : 1;
tnode->parent = parent;
tnode->pattern = pattern;
}
return tnode;
}
可以看到这个函数会先初始化后支配树根节点,然后求每个节点的输入节点的LCA,也就是这个节点的支配点。这个函数中的LeastCommonAncestor
用来求取当前节点所有输入节点(和这个节点相连的所有边)的LCA,代码是实现如下:
/*!
* \brief Find the least common ancestor of a list of nodes.
* \param nodes the nodes.
* \param edge_pattern
* The combined edge pattern across all the parents.
* \return The least common ancestor of all nodes.
*/
Node* LeastCommonAncestor(const LinkedList<IndexedForwardGraph::Edge>& input_nodes,
OpPatternKind* edge_pattern) {
auto link = input_nodes.head;
if (link == nullptr) {
return nullptr;
}
auto get_node = [&](const IndexedForwardGraph::Edge& edge) {
size_t oindex = edge.node->index;
ICHECK_LT(oindex, nodes.size());
Node* onode = nodes[oindex];
ICHECK(onode != nullptr);
return onode;
};
Node* parent = get_node(link->value);
*edge_pattern = CombinePattern(*edge_pattern, link->value.pattern);
link = link->next;
for (; link != nullptr; link = link->next) {
parent = LeastCommonAncestor(parent, get_node(link->value), edge_pattern);
*edge_pattern = CombinePattern(*edge_pattern, link->value.pattern);
}
return parent;
}
这个函数实际上是一个for循环,固定第一个节点然后求第二个节点和第一个节点的LCA,求出来之后更新当前的parent
为这个LCA节点,以此类推遍历完所有节点后就获取了所有节点的LCA。在DAG中求取LCA的具体代码实现为:
/*!
* \brief Find the least common ancestor of the two nodes.
* \param lhs The left node.
* \param rhs The right node.
* \param edge_pattern
* The combined edge pattern across all the parents.
* \return The least common ancestor of the two.
*/
static Node* LeastCommonAncestor(Node* lhs, Node* rhs, OpPatternKind* edge_pattern) {
while (lhs != rhs) {
if (lhs == nullptr) return nullptr;
if (rhs == nullptr) return nullptr;
if (lhs->depth < rhs->depth) {
edge_pattern[0] = CombinePattern(edge_pattern[0], rhs->pattern);
rhs = rhs->parent;
} else if (rhs->depth < lhs->depth) {
edge_pattern[0] = CombinePattern(edge_pattern[0], lhs->pattern);
lhs = lhs->parent;
} else {
edge_pattern[0] = CombinePattern(edge_pattern[0], lhs->pattern);
edge_pattern[0] = CombinePattern(edge_pattern[0], rhs->pattern);
lhs = lhs->parent;
rhs = rhs->parent;
}
}
return lhs;
}
这个函数就是求取LCA最暴力的做法,当两个节点的深度不一致的时候就沿着父亲节点向上爬,知道深度一致就找打了两个节点的LCA节点。在计算支配点的pattern的时候,会依据pattern的定义,选择pattern值最大的作为LCA的pattern。这是猜测因为定义的从最小值到最大值pattern可以向下进行融合,比如kElemWise=0
, kInjective=2
, 那么前者就能融合到KInjective
中。
融合
接下来介绍算符融合的最后一个阶段,融合。我们在完成DAG和后支配树postDominator Tree
的构建知道就可以进行算符融合了。对于融合,fuse_ops.cc
中的概述如下:
The fusion algorithm traverses from each node and checks if it can be fused to its immediate post dominator. It has to check the following things:
- CheckPath: check all the path between a node and its immediate post-dominator satisfies the fuse condition.
- Note that these intermediate node can already be fused with another nodes, the algorithm will still run correctly.
- CommitFuse: mark all the nodes between source and post-dominator as the same group.
- We use an Union-Find data structure to manage the groups.
首先融合操作的接口在这个函数中:
std::vector<GraphPartitioner::Group*> GraphPartitioner::Partition(
const IndexedForwardGraph& graph) {
this->InitGroups(graph);
if (opt_level_ == 0) return std::move(groups_);
// get post dominator tree
auto post_dom_tree = DominatorTree::PostDom(arena_, graph);
// run fusion algorithm.
for (int phase = 0; phase < 3; ++phase) {
this->RunFuse(graph, post_dom_tree, phase);
}
return std::move(groups_);
}
这里在获取了IndexedForwardGraph
和DominatorTree
之后,使用了三个phase完成了算符融合,接下来我们就跟进一下phase 0这个过程。在这个之前有一个this->InitGroups
函数,它实现了初始化groups_
的功能,其中groups_
是GraphPartitioner
类中定义的结构体变量,用于表示融合后的图结构,如果某些算符可以融合,那么就通过这个结构体的parent
,master_ref
将这些节点建立连接关系。Group首先进行初始化和DAG相同的图,即这里的InitGroups
函数。然后分别遍历DAG,postDominator tree
,以及group
图中节点,来判断算子是否能被融合。Group
结构体的定义和InitGroups
的代码实现如下:
struct Group {
/*! \brief The parent in the union find data structure. */
Group* parent{nullptr};
/*! \brief The pattern of the group */
OpPatternKind pattern;
/*! \brief reference to the root node. */
const tvm::Object* root_ref{nullptr};
/*!
* \brief Reference to the anchor node,
* this field is not nullptr only if pattern is kOutEWiseFusable.
*/
const tvm::Object* anchor_ref{nullptr};
/*!
* \brief Find the group root, perform path compression
* \return The root type node.
*/
Group* FindRoot() {
// fast path
if (this->parent == nullptr) return this;
// slow path with path compression.
Group* root = this;
while (root->parent != nullptr) {
root = root->parent;
}
for (Group* p = this; p != root;) {
Group* parent = p->parent;
p->parent = root;
p = parent;
}
return root;
}
/*!
* \brief The number of nodes belonging to this group
*/
uint32_t num_nodes{1};
};
// Initialize the groups.
void InitGroups(const IndexedForwardGraph& graph) {
groups_.resize(graph.post_dfs_order.size());
for (size_t nid = 0; nid < groups_.size(); ++nid) {
const auto* graph_node = graph.post_dfs_order[nid];
auto* group_node = arena_->make<Group>();
group_node->pattern = graph_node->pattern;
group_node->root_ref = graph_node->ref;
// set anchor ref if necessary.
if (group_node->pattern == kOutEWiseFusable) {
group_node->anchor_ref = graph_node->ref;
}
groups_[nid] = group_node;
}
}
继续看一下算符融合的核心函数RunFuse
,
// execute the fusion algorithm.
void RunFuse(const IndexedForwardGraph& graph, const DominatorTree& post_dom_tree, int phase) {
// 从计算图的顶部开始遍历,在初始状态groups_的节点等同于IndexedForwardGraph的节点。
for (size_t nid = 0; nid < groups_.size(); ++nid) {
// the group of current node has been specified already.
auto* graph_node = graph.post_dfs_order[nid];
auto* dom_node = post_dom_tree.nodes[nid];
Group* group_node = groups_[nid];
ICHECK(group_node != nullptr);
// no actions for opaque nodes
if (group_node->pattern == kOpaque) continue;
// no actions needed if the current node have no dominator
if (dom_node->parent == nullptr) continue;
ICHECK(!graph_node->extern_ref);
size_t dom_parent_gindex = dom_node->parent->gnode->index;
// 能够融合的节点超过了一定数量(max_fuse_depth_)就不融合
if (CountFusedNodesWithNewChild(graph_node, dom_node->parent->gnode) > max_fuse_depth_)
continue;
if (phase == 2) {
// Fuse injective ops into intermediate tuples, if any
if (group_node->pattern > kInjective) continue;
Group* dom_parent_group = groups_[dom_parent_gindex];
Group* dom_root_group = dom_parent_group->FindRoot();
// If dom node group has a tuple as its root, we do not fuse tuple fields into it
if (dom_root_group->pattern == kTuple) continue;
if (dom_parent_group->pattern == kTuple && dom_root_group->pattern <= kInjective) {
// Now we know the tuple has been fused into subsequent injective ops
auto fcond = [](OpPatternKind kind, bool is_sink) { return kind <= kInjective; };
// dom_root_group can also be tuple, as in inception layers
// CheckPath is needed to avoid fusing two intermediate tuples
if (CheckPath(graph_node, dom_node->parent->gnode, fcond)) {
CommitFuse(graph_node, dom_node->parent->gnode);
}
}
continue;
}
// 如果当前节点和父节点已经融合了就跳过当前节点,避免重复融合
if (groups_[dom_parent_gindex] != nullptr &&
group_node->FindRoot() == groups_[dom_parent_gindex]->FindRoot()) {
continue;
}
// Do not fuse into tuple for now
if (groups_[dom_parent_gindex]->pattern == kTuple) continue;
// Try to fuse current node to its post-dominator.
if (group_node->pattern == kOutEWiseFusable) {
if (phase != 0) continue;
// Path for OutEWiseFusable: conv2d
// Check if the dominator relation is elemwise.
if (dom_node->parent != nullptr && dom_node->pattern == kElemWise) {
ICHECK(dom_node->parent->gnode != nullptr);
// The fuse can be executed if all the intermediate ops are still broadcast.
auto fcond = [](OpPatternKind kind, bool is_sink) { return kind <= kBroadcast; };
if (CheckPath(graph_node, dom_node->parent->gnode, fcond)) {
CommitFuse(graph_node, dom_node->parent->gnode);
}
}
} else if (group_node->pattern <= kBroadcast) {
// Pre-condition: can only be fused to parent which is injective or reduction.
if (dom_node->parent != nullptr &&
(dom_node->pattern <= kInjective || dom_node->pattern == kCommReduce)) {
// Check if all the intermediate ops are still broadcast.
// The final terminal node can already be fused to a OutEWiseFusable group.
auto fcond = [](OpPatternKind kind, bool is_sink) {
if (!is_sink) {
// Elemwise, broadcast, and injective ops on the parallel branches
// are allowed be fused to the elemwise/broadcast anchor.
return kind <= kInjective;
} else {
return (kind <= kBroadcast || kind == kCommReduce || kind == kInjective ||
kind == kOutEWiseFusable);
}
};
if (CheckPath(graph_node, dom_node->parent->gnode, fcond)) {
CommitFuse(graph_node, dom_node->parent->gnode);
}
}
} else if (group_node->pattern == kInjective || group_node->pattern == kTuple) {
// defer injective fusion to second phase.
// so conv2d always finishes fusing.
if (phase != 1) continue;
// Check if all path are injective.
auto fcond = [](OpPatternKind kind, bool is_sink) { return kind <= kInjective; };
if (CheckPath(graph_node, dom_node->parent->gnode, fcond)) {
CommitFuse(graph_node, dom_node->parent->gnode);
}
} else {
// do nothing.
ICHECK(group_node->pattern == kCommReduce);
}
}
}
};
不难发现当phase=0
时只处理了kElemWise,kBroadcast融合,从之前介绍的Op融合优先级关系来看ElemWise/Broadcast可以和ElemWise/Broadcast/Injective/CommReduce尝试进行融合。
然后我们看一下另外两个处理的核心函数即CheckPath
和CommitFuse
,CheckPath
就是考察src到sink 节点之间的路径是否可以进行融合,判断条件使用了一个正则表达式,即上面的auto fcond = [](OpPatternKind kind, bool is_sink) ...
。然后我们看一下CheckPath
这个函数的代码实现:
/*!
* \brief Check all the node and edge pattern
* between src and sink satisfies fcond.
*
* src is not checked.
*
* \param src The source node.
* \param sink The termination node.
* \param fcond The condition to be checked.
* \tparam F the condition function, with signature
* \note sink must be a post-dominator of src.
*/
template <typename F>
bool CheckPath(IndexedForwardGraph::Node* src, IndexedForwardGraph::Node* sink, F fcond) {
ICHECK(!src->extern_ref);
visited_.clear();
ICHECK(src != sink);
for (auto link = src->outputs.head; link != nullptr; link = link->next) {
if (!CheckPath_(link->value.node, sink, fcond)) return false;
}
return true;
}
在CheckPath这个函数中递归调用了名为CheckPath_
的函数,这样就可以遍历当前节点到LCA节点的所有路径,然后通过fcond(gnode->pattern, osrc == sink)
判断是否符合融合规则。
只有融合终节点支持kCommReduce和kOutEWiseFusable,而Path路径上的节点支持path路径中只支持ElemWise/Broadcast/Injective多种算符融合。
然后我们再看一下CommitFuse
这个关键函数,当判断支配树的前后节点可以融合后,那么就开始执行融合操作,函数实现如下:
/*!
* \brief Commit fusion operation.
* \param src The source node.
* \param sink The termination node.
* \note sink must be a post-dominator of src.
*/
void CommitFuse(IndexedForwardGraph::Node* src, IndexedForwardGraph::Node* sink) {
Group* target = groups_[sink->index];
visited_.clear();
ICHECK(src != sink);
CommitFuse_(src, sink, target);
}
这里新增了一个Group* target
指针,来指定融合的节点。然后调用CommitFuse_
这个递归函数完成融合。
// Internal implelementation of CommitFuse
void CommitFuse_(IndexedForwardGraph::Node* src, IndexedForwardGraph::Node* sink, Group* target) {
if (src == sink) return;
if (visited_.count(src)) return;
visited_.insert(src);
Group* gnode = groups_[src->index];
ICHECK(gnode != nullptr);
// merge the current group to the parent if possible.
MergeFromTo(gnode, target);
for (auto link = src->outputs.head; link != nullptr; link = link->next) {
CommitFuse_(link->value.node, sink, target);
}
}
这里的MergeFromTo(gnode, target);
节点是融合的实现,代码如下:
/*!
* \brief Merge the child group to the parent.
* \param child The child group.
* \param parent The parent group.
*/
void MergeFromTo(Group* child, Group* parent) {
child = child->FindRoot();
parent = parent->FindRoot();
if (child == parent) return;
// update the number of nodes of the parent group
parent->num_nodes += child->num_nodes;
child->parent = parent;
// update anchor ref and pattern
if (child->anchor_ref != nullptr) {
ICHECK(parent->anchor_ref == nullptr);
parent->anchor_ref = child->anchor_ref;
parent->pattern = CombinePattern(child->pattern, parent->pattern);
}
}
我们首先来看一下这个函数里面的child->FindRoot()
函数,在上面介绍Group
定义的时候贴过代码了,它用来寻找当前节点的父节点。为什么要找父节点,这是因为parent是计算图中可以融合节点的最底层节点。比如A-B-C可以融合,那么B的parent最终会是C,A的parent也会是C。因此通过上面函数的前四行操作之后中间节点的parent都会指向target或target的root。这里和并查集很类似,如果没太理解这个过程可以看一下并查集的合并函数。
完成这些操作之后,RunFuse
就返回了一个图graph_
,这个图是DAG,并且图中的每个节点的parent表示该节点可以融合到的目标节点。最后存储在std::vector<GraphPartitioner::Group*>
这个数据结构之中。
在这之后,还有最后一个操作,即遍历上面的输出图完成真正的融合,生成融合后的Expr。这是通过FuseMutator
这个类来完成的,这个类定义了一个std::unordered_map<const Object*, GraphPartitioner::Group*> gmap_;
来映射节点对应的可融合目标节点。如FuseMutator
类的成员函数Transform
所示:
// Run the transform
Expr Transform(const Expr& body, int fuse_opt_level, size_t max_fuse_depth) {
// setup the group map.
auto graph = IndexedForwardGraph::Create(&arena_, body);
auto groups = GraphPartitioner(&arena_, fuse_opt_level, max_fuse_depth).Partition(graph);
for (size_t nid = 0; nid < graph.post_dfs_order.size(); ++nid) {
ICHECK(graph.post_dfs_order[nid]->ref != nullptr);
gmap_[graph.post_dfs_order[nid]->ref] = groups[nid];
}
// The following line can be used for debug.
// this->DebugDumpGroup(body);
return this->Mutate(body);
}
这个函数的具体细节就不继续展开了,读者感兴趣可以自行查看这个类的细节实现,有不理解的也可以找我讨论。我们只需要知道这个类实现了将可以融合的一些列节点转换成Function Expr并进行返回,这样才能让算符融合这个Pass完整就可以了。
0x04. 总结
这篇文章介绍了TVMPass Infra的一些实践例子,然后介绍了支配树和算符融合Pass。TVM学了两个月左右了,目前一直在学习TVM的基础设施,并且Codegen的流程也还没打通,甚至Auto-TVM和Ansor也还没有去学习,学习路程是漫长的。为了不让学习之路变得枯燥,下一节我应该会整点大家看起来比较轻松的话题。
END
推荐阅读
更多嵌入式AI技术干货请关注嵌入式AI专栏。