绪论
查看《为什么FPGA/ADC通信在工业领域下更喜欢用GPMC接口?》了解TinyML~
今天介绍几个与TinyML相关的开源项目。
TinyML Cookbook
https://github.com/PacktPublishing/TinyML-Cookbook
介绍
这本书是关于 TinyML 的,TinyML 是一个快速发展的领域,位于机器学习和嵌入式系统的独特交叉点,可以使 AI 在微控制器等极低功耗设备中应用。
TinyML 是一个充满机遇的激动人心的领域。只需很少的预算,我们就可以赋予与周围世界巧妙互动的物体生命,并让我们的生活方式变得更美好。本书想通过实例来扫除这些障碍,让没有嵌入式编程经验的开发者也能上手TinyML。每一章都将是一个独立的项目,以学习如何使用 TinyML 的一些核心技术,与传感器等电子组件接口,以及在内存受限的设备上部署 ML 模型。
License
MIT license
Lattice tinyvision & tingyml
https://github.com/tinyvision-ai-inc
https://www.latticesemi.com/Products/DevelopmentBoardsAndKits/HimaxHM01B0
上面只是放了Lattice在低功耗FPGA Up5k上实现相关AI例程的参考链接,想关的可以自己搜索,官网上都有相关介绍,github上看着不像官方的,不过也有很多完整的参考设计。
Efinix TinyML
https://github.com/Efinix-Inc/tinyml/tree/661ae30f2bf5b083ab88c7a4e54f0185a859f9b8
Efinix 提供基于开源 TensorFlow Lite for Microcontrollers (TFLite Micro) C++ 库的 TinyML 平台,该库在 RISC-V 上运行,带有 Efinix TinyML 加速器。本网站提供端到端设计流程,有助于在 Efinix FPGA 上部署 TinyML 应用程序。介绍了从人工智能 (AI) 模型训练、训练后量化一直到使用 Efinix TinyML 加速器在 RISC-V 上运行推理的设计流程。此外,还展示了 TinyML 在 Efinix 高度灵活的特定领域框架上的部署。
RISC-V SoC:
设计流程:
TinyAcc
https://github.com/kksweet8845/TinyAcc
这是一个实现具有下降功能的神经网络模型的项目。
总结
今天介绍的TunyML项目只有几个,目前的应用场景还是比较偏向于嵌入式微处理上,只有Lattice和Efinix FPGA在这方面推出了自己的IP及示例程序,而Lattice的发展更倾向于开源的发展(靠开源推广),所以这方面的应用是个“前途”还是“断途”就仁者见仁智者见智了~
最后,还是感谢各个大佬开源的项目,让我们受益匪浅。今天就到这,我是爆肝的碎碎思,期待下期文章与你相见。
原文:OpenFPGA
作者:碎碎思
相关文章推荐
更多FPGA干货请关注FPGA的逻辑技术专栏。欢迎添加极术小姐姐微信(id:aijishu20)加入技术交流群,请备注研究方向。