超神经HyperAI · 2024年11月07日 · 天津

【Triton 教程】低内存 Dropout

微信图片_20241017175208.png
Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境,以高效编写自定义 DNN 计算内核,并能够在现代 GPU 硬件上以最大吞吐量运行。

更多 Triton 中文文档可访问 →https://triton.hyper.ai/

在本教程中,您将编写一个内存高效的 Dropout 实现,其状态将由单个 int32 seed 组成。这与传统 Dropout 实现不同,传统实现通常由与输入 shape 相同的位掩码张量组成。

在这过程中,您将学习到以下内容:

  • PyTorch 中 原生实现 Dropout 的局限性。
  • Triton 中的并行伪随机数生成。

简介

Dropout 是在 [SRIVASTAVA2014] 中引入的一种技术,用于改善低数据条件下深度神经网络的性能,通常用于正则化。它接受一个向量作为输入,并生成相同 shape 的输出向量。输出中的每个标量都有概率 p 被设为零,否则直接从输入复制。这使得网络在仅有输入的 1−p 标量时也能表现良好。

在评估阶段,为了充分利用网络的能力,将 p 设为 0。但是简单地将 p 设为 0 会增加输出的范数,可能会人为地降低输出的 softmax temperature。为了防止这种情况发生,输出被缩放为 1/(1-p),这使得无论 dropout 概率如何都能保持一致的范数。

Baseline

首先看一下 baseline 的实现。

import tabulate
import torch


import triton
import triton.language as tl


@triton.jit
def _dropout(
    x_ptr,      # 输入指针
    x_keep_ptr, # pointer to a mask of 0s and 1s 由 0 和 1 组成的掩码的指针
    output_ptr, # pointer to the output 输出指针
    n_elements, # number of elements in the `x` tensor `x` 张量的元素数量
    p,          # probability that an element of `x` is changed to zero 元素 `x` 被设置为 0 的概率
    BLOCK_SIZE: tl.constexpr,
):
    pid = tl.program_id(axis=0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elements
    # Load data
    # 加载数据
    x = tl.load(x_ptr + offsets, mask=mask)
    x_keep = tl.load(x_keep_ptr + offsets, mask=mask)
    # The line below is the crucial part, described in the paragraph above!
    # 下一行是上段描述的关键部分
    output = tl.where(x_keep, x / (1 - p), 0.0)
    # Write-back output
    # 写回输出
    tl.store(output_ptr + offsets, output, mask=mask)


def dropout(x, x_keep, p):
    output = torch.empty_like(x)
    assert x.is_contiguous()
    n_elements = x.numel()
    grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), )
    _dropout[grid](x, x_keep, output, n_elements, p, BLOCK_SIZE=1024)
    return output


# Input tensor
# 输入张量
x = torch.randn(size=(10, )).cuda()
# Dropout mask
# Dropout 掩码
p = 0.5
x_keep = (torch.rand(size=(10, )) > p).to(torch.int32).cuda()
#
output = dropout(x, x_keep=x_keep, p=p)
print(tabulate.tabulate([
    ["input"] + x.tolist(),
    ["keep mask"] + x_keep.tolist(),
    ["output"] + output.tolist(),
]))

Out:
在这里插入图片描述

种子化 Dropout

上述 Dropout 实现效果良好,但管理 Dropout 状态可能会变得复杂,特别是在考虑反向传播和重新计算/检查点场景时。在这里,我们描述一种替代实现,它具有以下优点:

  1. 更小的内存占用。
  2. 较少的数据移动。
  3. 简化了在多次调用内核函数时持久化随机性的管理。

生成 Triton 中的伪随机数很简单!在本教程中,我们将使用 triton.language.rand 函数,该函数基于给定的种子和一组 int32 偏移量生成一个块的均匀分布的 float32 值,范围在 (0, 1) 内。但如果你需要,Triton 也提供其他随机数生成策略。

注意 Triton 的 PRNG 实现基于 Philox 算法(详见 [SALMON2011])。

现在将所有内容整合起来。

@triton.jit
def _seeded_dropout(
    x_ptr,
    output_ptr,
    n_elements,
    p,
    seed,
    BLOCK_SIZE: tl.constexpr,
):
    # compute memory offsets of elements handled by this instance
    # 计算由此实例处理的元素的内存偏移量
    pid = tl.program_id(axis=0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    # load data from x
    # 从 x 读取数据
    mask = offsets < n_elements
    x = tl.load(x_ptr + offsets, mask=mask)
    # randomly prune it
    # 随机修剪
    random = tl.rand(seed, offsets)
    x_keep = random > p
    # write-back
    # 写回
    output = tl.where(x_keep, x / (1 - p), 0.0)
    tl.store(output_ptr + offsets, output, mask=mask)


def seeded_dropout(x, p, seed):
    output = torch.empty_like(x)
    assert x.is_contiguous()
    n_elements = x.numel()
    grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), )
    _seeded_dropout[grid](x, output, n_elements, p, seed, BLOCK_SIZE=1024)
    return output




x = torch.randn(size=(10, )).cuda()
# Compare this to the baseline - dropout mask is never instantiated!
# 与基线相比 - dropout 掩码从未被实例化!
output = seeded_dropout(x, p=0.5, seed=123)
output2 = seeded_dropout(x, p=0.5, seed=123)
output3 = seeded_dropout(x, p=0.5, seed=512)


print(tabulate.tabulate([
    ["input"] + x.tolist(),
    ["output (seed = 123)"] + output.tolist(),
    ["output (seed = 123)"] + output2.tolist(),
    ["output (seed = 512)"] + output3.tolist(),
]))

Out:

在这里插入图片描述

大功告成!我们现在有了一个 Triton 内核,可以在给定相同种子的情况下应用一致的 dropout 掩码。与传统的 dropout 实现相比,这种方法减少了内存开销并简化了状态管理。

练习

  1. 扩展内核以处理矩阵,并使用一个种子向量 — 每行一个种子。
  2. 添加对 striding 的支持。
  3. (挑战)实现稀疏 Johnson-Lindenstrauss 变换的内核,每次使用种子动态生成投影矩阵。

参考文献

  • [SALMON2011] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw, "Parallel Random Numbers: As Easy as 1, 2, 3", 2011
  • [SRIVASTAVA2014] Nitish Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014

​Download Jupyter notebook: 04-low-memory-dropout.ipynb

Download Python source code: 04-low-memory-dropout.py

Download zipped: 04-low-memory-dropout.zip

推荐阅读
关注数
667
内容数
255
链接人工智能新场景
目录
极术微信服务号
关注极术微信号
实时接收点赞提醒和评论通知
安谋科技学堂公众号
关注安谋科技学堂
实时获取安谋科技及 Arm 教学资源
安谋科技招聘公众号
关注安谋科技招聘
实时获取安谋科技中国职位信息