这是微软发布在2022 ICML的论文,MoE可以降低训练成本,但是快速的MoE模型推理仍然是一个未解决的问题。所以论文提出了一个端到端的MoE...
大型语言模型(llm)是一种人工智能(AI),在大量文本和代码数据集上进行训练。它们可以用于各种任务,包括生成文本、翻译语言和编写不同类...
包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,...
Meta AI 在本周二发布了最新一代开源大模型 Llama 2。对比于今年 2 月发布的 Llama 1,训练所用的 token 翻了一倍,已经达到了 2 万亿,...
Learning to Learn by Gradient Descent by Gradient Descent 提出了一种全新的优化策略,用 LSTM 替代传统优化方法学习一个针对特定任...
本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、...
CTR预估是目前推荐系统的核心技术,其目标是预估用户点击推荐内容的概率。DeepFM模型包含FM和DNN两部分,FM模型可以抽取low-order(低阶...
ChatGPT和Midjournal使得生成式人工智能的应用程序激增。当涉及到生成式AI时,"prompt"通常指的是作为输入给模型的初始提示或指示。它是...
命名实体识别(Named Entity Recoginition, NER)旨在将一串文本中的实体识别出来,并标注出它所指代的类型,比如人名、地名等等。具体...
视频流的爆炸性增长为以高精度和低成本执行视频理解任务带来了挑战。传统的2D CNN计算成本低,但无法捕捉视频特有的时间信息;3D CNN可...
OCR(Optical Character Recognition,光学字符识别)是指对图像进行分析识别处理,获取文字和版面信息的过程,是典型的计算机视觉任务,通...
作者发现Deep Convolutional Neural Networks (DCNNs) 能够很好的处理的图像级别的分类问题,因为它具有很好的平移不变性(空间细节信息...
目前,计算机视觉是深度学习领域最热门的研究领域之一。从广义上来说,计算机视觉就是要“赋予机器自然视觉的能力”。实际上,计算机视觉...
LeNet是最早的卷积神经网络之一[1],其被提出用于识别手写数字和机器印刷字符。1998年,Yann LeCun第一次将LeNet卷积神经网络应用到图像...
所谓生成模型,就是指可以描述成一个生成数据的模型,属于一种概率模型。维基百科上对其的定义是:在概率统计理论中, 生成模型是指能...
优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。
即使各种鼓励政策不断被使出,很多发达国家的女性,也不大愿意生孩子了。少子化是现代化、工业化的附赠品,这一点无可回避。
当身边的人都在讨论大模型时,你有没有发现总会听到一些陌生的词汇?这个视频通过通俗易懂的例子带你轻松了解这些大模型的行业黑话,看...
深度学习进阶篇-预训练模型[4]:RoBERTa、SpanBERT、KBERT、ALBERT、ELECTRA算法原理模型结构应用场景区别等详解1.SpanBERT: Improving ...
从字面上看,预训练模型(pre-training model)是先通过一批语料进行训练模型,然后在这个初步训练好的模型基础上,再继续训练或者另作...