在图像分类任务中,图像数据的增广是一种常用的正则化方法,主要用于增加训练数据集,让数据集尽可能的多样化,使得训练的模型具有更强...
人工智能领域:面试常见问题超全(深度学习基础、卷积模型、对抗神经网络、预训练模型、计算机视觉、自然语言处理、推荐系统、模型压缩...
Segment anything model (SAM)是一种快速引导的视觉基础模型,用于从其背景中剪切出感兴趣的目标。自Meta研究团队发布SA项目以来,SAM...
理性这个关键字,因为它是博弈论的基础。我们可以简单地把理性称为一种理解,即每个行为人都知道所有其他行为人都和他/她一样理性,拥有...
基于Transformer模型在众多领域已取得卓越成果,包括自然语言、图像甚至是音乐。然而,Transformer架构一直以来为人所诟病的是其注意力...
当身边的人都在讨论大模型时,你有没有发现总会听到一些陌生的词汇?这个视频通过通俗易懂的例子带你轻松了解这些大模型的行业黑话,看...
经典的Transformer在处理数据时,会将文本数据按照固定长度进行截断,这个看起来比较”武断”的操作会造成上下文碎片化以及无法建模更长的...
ERINE是百度发布一个预训练模型,它通过引入三种级别的Knowledge Masking帮助模型学习语言知识,在多项任务上超越了BERT。在模型结构方...
自回归模型(Autoregressive Model, AR),通过估计一串文本序列的生成概率分布进行建模。一般而言,AR模型通过要么从前到后计算文本序...
在正式讨论 Transformer-XL 之前,我们先来看看经典的 Transformer(后文称 Vanilla Transformer)是如何处理数据和训练评估模型的,如...
从字面上看,预训练模型(pre-training model)是先通过一批语料进行训练模型,然后在这个初步训练好的模型基础上,再继续训练或者另作...
生活中,我们经常会遇到或者使用一些时序信号,比如自然语言语音,自然语言文本。以自然语言文本为例,完整的一句话中各个字符之间是有...
在NLP领域,自然语言通常是指以文本的形式存在,但是计算无法对这些文本数据进行计算,通常需要将这些文本数据转换为一系列的数值进行计...
在像素级预测问题中(比如语义分割,这里以FCN[1]为例进行说明),图像输入到网络中,FCN先如同传统的CNN网络一样对图像做卷积以及池化...
图片质量是另一个我比较常用的属性,首先需要注意这个参数并不影响分辨率,并不改变分辨率,并不改变分辨率(重要的事情要说三遍)。
本项目为UIE框架升级版本实体关系抽取,详细讲解了数据标注,以及医疗领域NER微调,同时完成基于SimpleServing的快速服务化部署,并考虑...
而是拿真图,或者别人生成的图来临摹。英文不好,也可以先写中文,然后让 ChatGPT 翻译。当你临摹了几张后,你就会慢慢搞懂如何做出类似...
Prompts can be very simple. Single words (or even an emoji!) will produce an image. Very short prompts will rely heavily on Mid...
Midjourney 跟 ChatGPT 在 prompt 的使用上有很多不一样的地方,本章会详细介绍下 Midjourney 的 text prompt 区别。
开头讲一下为什么选择Midjourney和文心一格,首先Midjourney功能效果好不多阐述;其次文心一格再多次迭代优化后效果也不错,重点也免费...